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a b s t r a c t 

The simulation of viscoplasitc flows is still attracting considerable attention in many industrial appli- 

cations. However, the underlying numerical discretization and regularization may suffer from numerical 

oscillations, in particular for high Bingham and Reynolds numbers flows. In this work, we investigate 

the Variational Multiscale stabilized finite element method in solving such flows. We combined it with a 

posteriori error estimator for anisotropic mesh adaptation, enhancing the use of the Papanastasiou regu- 

larization. Computational results are compared to existing data from the literature and new results have 

demonstrated that the approach can be applied for Bingham numbers higher than 10 0 0 yielding accurate 

predictions. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Yield stress fluids represent materials that present viscoplastic 

behavior and have the property to flow when the material exceeds 

a yield limit. They are observed and studied in many research 

fields such as in geophysics to study avalanches [1] , or magma and 

mud flows as in [2] , blood rheology in [3] , as well as in civil engi- 

neering to study for instance cement behavior [4] . Indeed, under- 

standing yield stress mechanics improves the optimization of sev- 

eral industrial processes; however, accurate representation of such 

flow patterns remains a challenge for numerical methods. 

Many kinds of yield stress fluids models exist in the literature. 

The most common is the Bingham model, which has the specificity 

to behave as a Newtonian fluid when the yield stress is exceeded: {
τ = 2 

(
ηp + 

τ0 

˙ ε 

)
˙ ε ˙ ε ˙ ε for τ > τ0 

˙ ε ˙ ε ˙ ε = 0 for τ ≤ τ0 

(1) 

τ 0 and ηp represent yield stress and plastic viscosity. τ and ˙ ε ˙ ε ˙ ε cor- 

respond respectively to extra-stress and strain rate tensors. ˙ ε rep- 

resent the second invariant of strain rate tensor, which is defined 

as: 

˙ ε = ( 2 ̇ ε : ˙ ε ) 
1 
2 (2) 
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The choice of norm for τ is expressed as follow: 

τ = 

(
1 

2 

τ : τ
) 1 

2 

(3) 

Numerical simulation offers a very flexible tool to model these 

kinds of fluid, and remains an inevitable step to study these com- 

plex fluids behavior. The remaining challenge is to construct effi- 

cient methods to capture such flow patterns in a robust and accu- 

rate way. In the literature, the computational domain may be dis- 

cretized by different techniques in order to solve Bingham flows. In 

[5] , a finite volume method is employed to discretize the equations 

which leads to approximate continuity and momentum equations 

on each control volumes. In [6] , a Smoothed Particle Hydrodynam- 

ics (SPH) approach is applied, which can be viewed as a numerical 

scheme where the fluid flow is decomposed into discrete particles. 

The most common used method in the literature is the finite el- 

ement formulation (see [7] and [8] for details). Nevertheless, the 

stability of the discrete formulation depends on appropriate com- 

patibility restrictions on the choice of the finite element spaces [9] . 

The lack of stability manifests in uncontrollable oscillations that 

pollute the solution, in particular for high Bingham and Reynolds 

numbers. 

On the other hand, we highlight another issue in the numerical 

simulation of a viscoplastic flow and is connected to the singu- 

larity of relations 1 and impossibility to determine stresses in the 

domains where the rate of deformation equals zero. In order to 

overcome these difficulties, various modifications, known as regu- 

larization methods have been introduced. We note two approaches, 

Bercovier-Engleman [10] and Papanastasiou [11] , where the term 
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ηp + τ0 / ̇ ε in relations 1 is replaced with ηp + τ0 / 

√ 

˙ ε 
2 + 1 /m 

2 

(Bercovier-Engleman) or ηp + τ0 (1 − e −m ̇

 ε ) / ̇ ε (Papanastasiou) for 

an arbitrarily large regularizing parameter m . The performance and 

comparisons between these methods are summarized and ana- 

lyzed in [12] . 

Despite the simplicity of implementing these models, some lim- 

itations still exist. The resolution is strongly dependent on the reg- 

ularizing parameter m . Indeed, taking high values of this parameter 

encounters convergence issues whereas small values limit the flow 

prediction and the flow arrest is not controlled. One must find a 

compromise for choosing this parameter, in order to ensure rea- 

sonable computation time and good accuracy of the solution. 

Several techniques have been developed aiming to increase this 

coefficient. One consists in applying a continuation method, which 

means to select dynamically m and to keep it smaller during all 

the simulation. Another one found in the literature consists in per- 

forming a number of Picard iterations, and switch to the Newton 

method when a sufficiently good approximation to the solution is 

found [13] . One may also consider multiplier methods as alterna- 

tives for regularized models. It consists in computing the extra- 

stress tensor directly using minimization algorithms. The most use- 

ful way consists in employing Augmented Lagrangian method, cou- 

pled with Uzawa algorithm. These kinds of method reveals to be 

more accurate to determine flow arrests, but convergence may be 

slow, which can lead to unreasonable computational times. 

In this work, we derive an adaptive Variational MultiScale 

(VMS) method for Bingham flows combined with a regularization 

method. The main reasons for this choice of adaptive variational 

approach are stability, robustness and computational efficiency. In- 

deed, mesh adaptation reveals to be a useful tool to improve accu- 

racy, without reaching high computational times. It consists in re- 

fining the mesh in specific areas where physics reveals to be highly 

complex. In [14] , an isotropic mesh adaptation is proposed and is 

based on the subdivision of a quadrilateral grid into subvolumes, 

each of them with the same mesh size. However, isotropic adapta- 

tion lacks in accuracy when the flow presents specific directional 

properties. We combine here the VMS formulation with an a pos- 

teriori error estimator for dynamic anisotropic mesh adaptation. It 

involves building a mesh based on a metric map. It provides both 

the size and the stretching of elements in a very condensed infor- 

mation data. Consequently, due to the presence of high gradients 

when using high values for the regularization coefficient, it pro- 

vides highly stretched elements at the inner and the boundary lay- 

ers, and thus yields an accurate modeling framework for Bingham 

flows as explained in [7] . The obtained system is then solved using 

a stabilized finite element method designed to handle the disconti- 

nuity on shear stress field. Indeed, it consists on the decomposition 

for both the velocity and the pressure fields into coarse/resolved 

scales and fine/unresolved scales, needed to deal with both high 

Bingham and Reynolds numbers. 

We assess the behavior and accuracy of the proposed formu- 

lation in the simulation of three time-dependent challenging nu- 

merical examples, aiming for the first time to deal with high reg- 

ularizing parameter (up to 10 6 ), high Bingham (up to 20 0 0) and 

Reynolds (up to 10 0 0 0) numbers. 

2. Governing equations 

2.1. The incompressible Navier–Stokes equations 

Let � ⊂ R 

n be the spatial domain at time t ∈ [0, T ], where n is 

the space dimension. Let � denote the boundary of �. We consider 

the following velocity-pressure formulation of the Navier–Stokes 

equations governing unsteady incompressible flows: {
ρ(δt v + v · ∇ v ) − ∇ · σ = f in � × [0 , T ] (4) 

∇ · v = 0 in � × [0 , T ] (5) 

where ρ and v are the density and the velocity, f the body force 

vector per unity density and σ the stress tensor which reads: 

σ = 2 η ε ε ε (v ) − p I d (6) 

with p and η the pressure and the dynamic viscosity, I d the iden- 

tity tensor and ε ε ε the strain-rate tensor defined as 

ε ε ε (v ) = 

1 

2 

( ∇ v + 

t ∇ v ) (7) 

Essential and natural boundary conditions for equation (4) are: 

v = g on �g × [0 , T ] (8) 

n · σ = h on �h × [0 , T ] (9) 

�g and �h are complementary subsets of the domain boundary �. 

Functions g and h are given and n is the unit outward normal vec- 

tor of �. As initial condition, a divergence-free velocity field v 0 ( x ) 

is specified over the domain �t at t = 0 : 

v (x , 0) = v 0 (x ) (10) 

2.2. Viscoplastic equation 

Yield stress fluids present the particularity to have a yield limit 

τ 0 , which must be overcome in order the material starts to flow, 

otherwise, it has a perfectly rigid behavior. Bingham fluids are con- 

sidered as ideal yield stress fluids because of their Newtonian be- 

havior with yield limit overtaking. Constitutive equations of these 

kinds of fluid are shown here: 

σ = τττ − p I d (
1 − τ0 

τ

)
τττ = 2 ηp ε ε ε (v ) for τ ≥ τ0 

ε ε ε (v ) = 0 for τ < τ0 

(11) 

However, the extra stress tensor τττ is not explicitly defined un- 

der the yield stress value, and thus, constitutive equations are not 

continuous in all the fluid. By the way, the main challenge consists 

in taking into account the material behavior into motion and mass 

equations. In this paper, we use a regularization method, which 

consists in computing effective viscosity of the fluid. When the 

fluid is flowing, this viscosity must approach the plastic viscosity 

and when no deformations occur, it must be the maximum possi- 

ble. Regularization methods aim to control and limit the maximum 

viscosity, in order to avoid convergence problems due to viscosity 

jumps. 

Papanastasiou proposed a regularization which consists in ex- 

pressing effective viscosity as an exponential function of shear rate 

[11] . Thus, we find the following expression for the effective vis- 

cosity ηe of the fluid : 

ηe = ηp + 

τ0 

˙ ε 
[1 − exp(−m ̇

 ε )] (12) 

m corresponds to the Papanastasiou regularizing coefficient de- 

signed to control the yield limit: the greater m , the better we 

approach the classical Bingham model. However, as mentioned 

before, it may manifest in uncontrollable oscillations and non- 

convergence solution, in particular for high Bingham and Reynolds 

numbers. 
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