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a b s t r a c t 

This paper is concerned with the development of high-order weighted compact schemes based on linear 

central compact schemes (Liu et al., 2013). For the purpose of capturing strong discontinuities, the high- 

order upwind weighted nonlinear interpolations are combined with the central compact schemes and 

cell-centered compact schemes to achieve two different weighted compact schemes, called the CCSSR-W 

and CCCSSR-W schemes respectively. The CCSSR-W schemes are developed up to ninth order, and four 

different nonlinear weights of CCSSR-W schemes are investigated in detail. As an improvement of the 

CCSSR-HW scheme (Liu et al., 2015), the hybrid weighted nonlinear interpolation is substituted into the 

cell-centered compact scheme to obtain the CCCSSR-HW scheme. For all the proposed schemes, the flux 

vector splitting method is carried out by coupling with characteristic projections on the conservative 

fluxes. Through the systematic accuracy tests, spectral analysis and numerical experiments, the results 

demonstrate that the higher order CCSSR-W scheme is more accurate and effective than the lower order 

ones. The CCCSSR-W scheme has better accuracy and resolution than the original WENO scheme. The 

CCCSSR-HW scheme has higher resolution and lower dissipation than the CCSSR-HW scheme, and even 

better than the higher order CCSSR-W schemes. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The high-order numerical methods have low dissipation and 

dispersion errors, which are especially suitable for complex hydro- 

dynamic problems, such as the compressible turbulence. Weighted 

essentially non-oscillatory (WENO) scheme is a quite popular high- 

order shock capturing method, which has been widely used for the 

compressible flows. Liu, Osher and Chan [14] first proposed the 

finite volume WENO scheme based on essentially non-oscillatory 

(ENO) scheme [9,25,26] , using the nonlinear weights to achieve 

the higher order of accuracy. In 1996, Jiang and Shu [11] pro- 

vided a general framework to construct arbitrary order accurate 

finite difference WENO schemes, which were more efficient for 

multi-dimensional calculations. Balsara and Shu [1] developed the 

WENO schemes up to the eleventh-order using the monotonicity- 

preserving procedure of Suresh and Huynh [28] . Shi et al. [23] per- 
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formed a numerical study on the resolution of high-order WENO 

finite difference methods for several benchmark problems contain- 

ing both discontinuities and complex fluid structures. 

However, Fedkiw et al. [7] noted that ε, a parameter in WENO 

scheme used for avoiding a division by zero in the denominator, 

was a dimensional quantity. They pointed out that large value of ε
caused the WENO scheme toward linear difference scheme, while 

small value of ε might cause the WENO scheme to reduce the or- 

der in the presence of critical points. Subsequently, Henrick et al. 

[10] devised a mapping function and applied it to the nonlinear 

weights of classical WENO scheme [11] . The improved fifth-order 

WENO scheme (WENO-M) can achieve the optimal convergence 

order at critical points even with very small ε, at the cost of in- 

creasing computational time. Borges et al. [2] introduced another 

version of the fifth-order WENO scheme (WENO-Z) with a global 

optimal smoothness indicator, which was the absolute value of lin- 

ear combination of the lower order local smoothness indicators. 

This method could achieve the optimal convergence order with 

very small ε at the critical points. In their following papers [4,6] , 

the authors developed higher order WENO-Z schemes up to the 

thirteenth-order. In [31] , Zhao et al. evaluated the improved fifth- 

order WENO schemes [2,10] for the implicit large eddy simulation 

of turbulent flows, they found that the WENO-Z scheme resulted in 
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a drastically reduced computational cost compared with WENO-M 

scheme. 

Although WENO schemes provide sharp shock-capturing, they 

underestimate most of the resolvable wavenumbers for broadband 

problems due to high numerical dissipation [12] . To simulate the 

multi-scale problems, such as turbulence and acoustic wave, a 

good choice is the linear compact scheme, which has better resolu- 

tion than explicit finite difference scheme at the same order of ac- 

curacy. The most influential compact scheme for derivative, inter- 

polation and filtering was proposed by Lele [13] . Through system- 

atic Fourier analysis, it is shown that these compact schemes have 

spectral-like resolution for short waves. In [15] , Liu et al. devel- 

oped a class of linear central compact schemes, which have better 

accuracy and resolution than the cell-centered compact schemes of 

Lele [13] . Linear compact schemes have been widely used for wave 

propagation problems in which nonlinearities are weak. However, 

it is well known that application of central discretization to high- 

Reynolds number fluid typically leads to numerical instability, and 

linear compact scheme can not deal with strong discontinuities. 

The combination of WENO scheme [11] and cell-centered com- 

pact scheme [13] has been developed by several researchers. Deng 

and Zhang [5] proposed the weighted compact nonlinear scheme 

(WCNS) for conservative variables, using the flux difference split- 

ting method to achieve the numerical fluxes. Nonomura et al. 

[19] developed the WCNS schemes [5] up to the seventh- and 

ninth-order. In [17] , Nonomura and Fujii investigated the effects of 

difference scheme type for high-order WCNS schemes [5,19] . These 

results show that the explicit difference scheme is preferable, and 

the weighted nonlinear interpolation is dominant for the resolu- 

tion of WCNS scheme. Instead of interpolating conservative vari- 

ables, Zhang et al. [30] developed a class of high-order weighted 

nonlinear interpolations for conservative fluxes. Through coupling 

with the cell-centered compact schemes [13] , they proposed the 

weighted compact (WCOMP) schemes, which have slightly higher 

resolution than classical WENO schemes [11] at the same order. In 

[18] , Nonomura and Fujii proposed a robust explicit weighted non- 

linear scheme (WCNS-MND), in which the linear difference scheme 

just as the explicit type of linear compact scheme by Liu et al. 

[15] , and the weighted nonlinear interpolation procedure was used 

for conservative variables. They found that this scheme was more 

robust and dissipative than WCNS scheme [5,17,19] . Recently, Liu 

et al. [16] proposed hybrid weighted compact schemes (CCSSR- 

HW) for conservative fluxes based on the hybrid factor of Ren et al. 

[21] , these schemes have higher resolution and lower dissipation 

than WENO schemes, and perform good shock-capturing proper- 

ties. However, the CCSSR-HW schemes [16] are even order (fourth- 

order and sixth-order), this strategy is a little difficult to be de- 

veloped up to higher order schemes. In addition, there are some 

empirical parameters in the hybrid factor [21] , which are needed 

to adjust for different numerical experiments. 

In this paper, we propose new weighted compact schemes with 

essentially non-oscillatory behavior across discontinuities, which 

are based on the linear central compact schemes proposed by Liu 

et al. [15] . The high-order weighted nonlinear interpolations, in- 

cluding upwind and hybrid interpolations, are implemented for 

two types of linear compact schemes, then the flux vector split- 

ting method is used to acquire the numerical conservative fluxes 

on the cell-centers. We also study the performance of four dif- 

ferent nonlinear weights for our new weighted compact schemes 

and WENO schemes. For all numerical experiments, the compar- 

isons between the proposed schemes and several representative 

nonlinear schemes are made for the resolution and dissipation. 

Through systematic analysis, numerical tests and comparisons, we 

show that our new weighted compact schemes are high order, high 

spectral resolution and low dissipation errors, while have good be- 

havior to capture strong discontinuities. 

This paper is organized as follows. The numerical methodol- 

ogy is presented in Section 2 , including the linear central compact 

schemes and weighted nonlinear compact schemes. The numerical 

accuracy tests are performed in Section 3 . The systematic analysis 

for the dispersion and dissipation characteristics of the proposed 

schemes is shown in Section 4 . Numerical experiments including 

strong discontinuities are given in Section 5 . The conclusions are 

stated in Section 6 . 

2. Numerical methodology 

In this section, the numerical methodology for our new 

weighted compact scheme is presented. 

We consider the numerical solution of the conservation law 

∂u 

∂t 
+ 

∂ f (u ) 

∂x 
= 0 

A semi-discrete finite difference can be represented as (
∂u 

∂t 

)
j 

= − f ′ j 

where f ′ 
j 

is the approximation to the spatial derivative ∂ f (u ) 
∂x 

at the 

grid node x j . 

We start this work from the linear central compact schemes 

proposed by Liu et al. [15] , then extend these linear schemes to 

high-order weighted nonlinear compact schemes with essentially 

non-oscillatory behavior across discontinuities. 

2.1. Linear central compact schemes 

In [13] , Lele proposed the linear cell-centered compact schemes 

with spectral-like resolution (CCCSSR), which have the following 

form 
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(2.1) 

Using both the values on the cell-nodes and cell-centers, 

Liu et al. [15] proposed the linear central compact schemes 

with spectral-like resolution (CCSSR), which improved the CCCSSR 

schemes [13] by 
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(2.2) 

The relationships among the coefficients of Eqs. (2.1) and 

(2.2) are derived by matching the Taylor series of various or- 

ders. The accuracy of CCCSSR scheme ranges from second-order to 

tenth-order. However, the accuracy of CCSSR scheme ranges from 

second-order to fourteenth-order. The detailed coefficients of the 

CCSSR and CCCSSR schemes are presented in [15] . 

If the schemes are restricted to α = 0 and β = 0 , a family of 

explicit CCSSR and CCCSSR schemes are obtained. If the schemes 

are restricted to α � = 0 and β = 0 , a variety of tridiagonal CCSSR 

and CCCSSR schemes are obtained. If α � = 0 and β � = 0, pentadi- 

agonal CCSSR and CCCSSR schemes are generated. Taking the CC- 

SSR schemes for instance, three kinds of schemes are denoted by 

CCSSR-E, CCSSR-T and CCSSR-P respectively. 

The tridiagonal schemes have the best combinations of reso- 

lution characteristics, order of accuracy and computational effi- 

ciency. Therefore, in this paper, we just focus on the tridiagonal 

schemes. The accuracy of tridiagonal CCSSR scheme ranges from 



Download English Version:

https://daneshyari.com/en/article/7156633

Download Persian Version:

https://daneshyari.com/article/7156633

Daneshyari.com

https://daneshyari.com/en/article/7156633
https://daneshyari.com/article/7156633
https://daneshyari.com

