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a b s t r a c t 

We develop a new second-order two-dimensional central-upwind scheme on cell-vertex grids for ap- 

proximating solutions of the Saint-Venant system with source terms due to bottom topography. Central- 

upwind schemes are developed based on the information about the local speeds of wave propagation. 

Compared to the triangular central-upwind schemes, the proposed cell-vertex one has an advantage of 

using more cell interfaces which provide more information on the waves propagating in different direc- 

tions. We propose a new piecewise linear approximation of the bottom topography and a novel non- 

oscillatory reconstruction in which the gradient of each variable is computed using a modified minmod- 

type method to ensure the stability of the scheme. A new technique is proposed for the correction of the 

water surface elevation which guarantees the positivity of the water depth. The well-balanced property 

of the proposed central-upwind scheme is ensured using a special discretization for the cell averages 

of the topography source terms. The proposed scheme is tested on a number of numerical examples, 

among which we consider steady-state solutions with almost dry areas and their perturbations and solu- 

tions with rapidly varying flows over discontinuous bottom topography. Our numerical experiments con- 

firm stability, well-balanced, positivity preserving properties and second-order accuracy of the proposed 

method. This scheme can be applied to shallow water models when the bed topography is discontinuous 

and/or highly oscillatory, and on complicated domains where the use of unstructured grids is advanta- 

geous. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

This paper focuses on development of modern numerical meth- 

ods for the two-dimensional (2D) Saint-Venant system of shallow 

water equations (SWEs): ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ 

h t + (hu ) x + (h v ) y = 0 , 

(hu ) t + 

(
hu 

2 + 
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)

x 
+ (hu v ) y = −ghB x , 

(h v ) t + (hu v ) x + 

(
h v 2 + 

g 

2 

h 

2 
)

y 
= −ghB y . 

(1) 

Here, h is the water depth, ( u, v ) T is the velocity field, the function 

B ( x, y ) represents the bottom elevation, and g is the acceleration 

due to gravity. 

Many upwind (see, e.g., [1,2,5,9,10,18,22,31,33,37] ) and central 

(see, e.g., [6,8,15,23,28,40,41,45] ) schemes for the shallow water 
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system (1) , which is a hyperbolic system of conservation (if B x ≡
B y ≡ 0) or balance (if B is not a constant) laws, have been pro- 

posed in the past two decades. Roughly speaking, the main differ- 

ence between upwind and central schemes is that upwind schemes 

use characteristic information and utilize (approximate) Riemann 

problem solvers to determine nonlinear wave propagation, while 

central schemes are based on averaging over the waves without 

using their detailed structures. 

Riemann-problem-solver-free central schemes have become a 

very popular tool for hyperbolic systems of conservation and 

balance laws after the pioneer work of Nessyahu and Tadmor, 

[38] , where a second-order, shock-capturing, finite-volume cen- 

tral scheme on a staggered grid was proposed. Since 1990, sev- 

eral higher-order and multidimensional extensions and generaliza- 

tions of staggered central schemes have been introduced (see, e.g., 

[40] and references therein). However, staggered central schemes 

may not provide a satisfactory resolution when small time steps 

are enforced by stability restrictions, which may occur, for exam- 

ple, in the application of these schemes to convection-diffusion 
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problems as observed in Kurganov and Tadmor [30] . These dis- 

advantages are caused by the accumulation of numerical dissipa- 

tion. Staggered central schemes can be improved by using some 

characteristic information on local speeds of propagation. This 

leads to a class of central-upwind schemes developed by Kurganov 

et al. in [25–27,30] . The central-upwind schemes are based on 

(one-sided) local speeds which represent the extreme eigenval- 

ues of the system. The use of these techniques makes the central- 

upwind schemes less dissipative compared to the staggered cen- 

tral schemes, and at the same time being Riemann-problem-solver- 

free methods they retain the major advantage of central schemes- 

simplicity. The central-upwind schemes have been successfully ap- 

plied to a variety of problems including several shallow water 

models [4,6,12,13,23,24,28,29,32] . 

SWEs and related models are of great interest for many atmo- 

spheric and oceanic applications as well as for modeling flows in 

the rivers and coastal areas. To be able to accurately model realistic 

situations, one has to develop numerical methods on unstructured 

grids due to their flexibility to represent irregular domains and 

convenience of local mesh refinement. There are two main propri- 

eties a good numerical method for SWEs should satisfy. The first 

one is called a well-balanced property: the scheme should exactly 

preserve “lake at rest” steady-state solutions. The second property 

is positivity preserving: the method should guarantee positivity of 

the computed values of the water depth in each point of the do- 

main at all times. 

The main widely used unstructured finite-volume methods are 

cell-centered (CCFVM) and cell-vertex (CVFVM) ones. The cell-vertex 

methods are sometimes referred to as node-centered, mesh-vertex 

or vertex-centered methods. For the CCFVM, the cells are the tri- 

angles of the primary mesh. For CVFVM the cells are the dual of 

the primary mesh as explained in the next section. For a detailed 

discussion on the two methods we refer the reader to [3,34,36] . 

Diskin et al. [17] have compared the node-centered and cell- 

centered schemes for finite-volume discretization of Poisson’s 

equation as a model with viscous fluxes. They have tested struc- 

tured and unstructured grids based on both triangular and quadri- 

lateral computational cells with randomly perturbed grid points. 

The authors found that the node-centered finite-volume methods 

typically outperform the cell-centered ones in terms of accuracy 

and convergence when the same number of degrees of freedom is 

used. 

Nikolos and Delis [39] proposed a cell-vertex upwind scheme 

for shallow water flows with wet/dry fronts over complex bot- 

tom topography. The authors used the Roe method to compute 

numerical fluxes and the time evolution of their scheme was car- 

ried out by an explicit four-stage Runge-Kutta method. Delis et al. 

[16] have recently performed an extensive comparison between 

node-centered and cell-centered upwind finite-volume methods 

for the 2D SWEs with different source terms on unstructured grids. 

They studied the performance, robustness and defectiveness of the 

two methods by comparing numerical results with both analyti- 

cal solutions and experimental and field data. In the analyses, the 

authors used different structures of computational grids and the 

comparisons were performed for all conservative variables using 

different norms. They found that the CVFVM leads to identical con- 

vergence behavior for grids with various qualities (in terms of ori- 

entation and distortion) while in the CCFVM, the results are in- 

fluenced by the grid quality. The reason is that the cells in the 

CVFVM are constructed in a way that leads to more spatial unifor- 

mity than the CCFVM. The authors concluded in their analyses that 

the CCFVM require more attention in order to obtain an appro- 

priate correction in the construction of the extrapolated primitive 

variables of the system. Without adequate correction, the points 

where the numerical fluxes are evaluated do not correspond to the 

flux vectors obtained by extrapolations. The quality of the results 

of the CVFVM are less affected by the grid geometry. In addition to 

the advantages already mentioned, the CVFVM present an advan- 

tage compared to the CCFVM for the treatment of the boundary 

conditions since in the case of the CVFVM the control volume cen- 

ters can be located on the boundary of the computational domain. 

To the best of our knowledge, no cell-vertex central-upwind 

scheme for shallow water flows or hyperbolic systems of conser- 

vation laws have been proposed in the literature. Bryson et al. 

[6] have proposed a central-upwind scheme on triangular grids 

for the Saint-Venant system of SWEs with possibly discontinuous 

bottom topography. The authors have showed that their method 

is well-balanced and positivity preserving, and demonstrated high 

resolution and robustness of the method. In this paper, we in- 

troduce a new well-balanced positivity preserving central-upwind 

scheme on cell-vertex grids (described in Section 2.1 ) for the 2D 

SWEs with variable topography. 

The paper is organized as follows. In Section 2 , we present the 

new cell-vertex semi-discrete central-upwind scheme for the SWEs 

(1) . In Section 3 , we propose a positivity preserving reconstruc- 

tion for water surface elevation. The well-balanced discretization 

of the source term is developed in Section 4 . The positivity pre- 

serving property of the proposed scheme is proved in Section 5 . In 

Section 6 , we demonstrate the high resolution and robustness of 

the proposed method by testing it on a variety of numerical ex- 

periments. The final Section 7 contains concluding remarks. 

2. The cell-vertex central-upwind scheme 

In this section, we focus on the derivation of the proposed 

cell-vertex central-upwind scheme. First the cell-vertex unstruc- 

tured grid and the notations used in this paper are described in 

Section 2.1 . Then, we develop the central-upwind method over 

cell-vertex grids for the SWEs (1) , which can be rewritten using 

the vector of variables U := ( w, p, q ) T as 

U t + F (U , B ) x + G(U , B ) y = S(U , B ) (2) 

with 

F (U , B ) = 

(
p, 

p 2 

w − B 

+ 

g 

2 

(w − B ) 2 , 
pq 

w − B 

)T 

, 

G(U , B ) = 

(
q, 

pq 

w − B 

, 
q 2 

w − B 

+ 

g 

2 

(w − B ) 2 
)T 

, 

S(U , B ) = 

(
0 , −g(w − B ) B x , −g(w − B ) B y 

)T 
, 

(3) 

where w := h + B represents the water surface elevation and p := 

hu and q := hv denote the discharges in the x - and y -directions, 

respectively. 

2.1. Cell-vertex grid and notations 

Unstructured cell-vertex grids are obtained using a triangular 

discretization of the global domain D: The finite-volume cells, de- 

noted by M j , are centered around the vertices as shown in Fig. 1 . 

There are various methods to define the dual grid. The control vol- 

ume around each node can be defined by connecting either the 

barycenters [39] or centroids [21] of the surrounding triangles of 

the node. These points can be connected either directly or with 

the midpoints of the edges that meet the node. In this paper, the 

boundary ∂M j of the cell M j around each internal triangulation ver- 

tex P j is defined by connecting directly the centers of mass of the 

surrounding triangles that have P j as a common vertex. The wa- 

ter surface elevation w and the discharges p and q are then repre- 

sented by the corresponding cell averages over the cells M j of size 

| M j | with the centers of mass denoted by G j ≡ ( x j , y j ). 

We assume that the discretization D = 

⋃ N 
j=1 M j consists of N 

non-overlapping cells ( N is equal to the number of nodes of 
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