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a b s t r a c t 

This paper is concerned with the computation of turbulence structure tensors in plane channel flow. It 

has been pointed out that the previously computed turbulence structure tensors, for this configuration, 

used an inconsistent set of boundary conditions. But it was claimed that this had no influence on the 

computed structure tensors since the velocity field reconstructed by the vector potential only had a con- 

stant offset when compared to the original velocity field. In this paper it is shown that this is not the 

case. Based on a highly resolved LES simulation, the turbulence structure tensors are computed both us- 

ing the previously employed boundary conditions and a consistent set of boundary conditions. The results 

exhibit considerable differences in a significant part of the domain. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Turbulent fluid motion consists of many interacting coherent 

structures commonly referred to as ‘eddies’. These eddies vary 

greatly in size, shape, and kinematic character, the distribution of 

which is highly case dependent. The type of eddies present in a 

flow significantly affects its dynamic response to external forcing. 

In particular, the large energy containing eddies play an active role 

in the flow dynamics. One way to quantify the turbulence struc- 

ture of a flow is through two-point correlations of the velocity 

field. The computation of such correlations can however be ex- 

ceedingly costly, and one-point measures of turbulence structure 

is therefore desirable from both a flow diagnostic and turbulence 

modeling perspective. 

A comprehensive mathematical framework for structure- 

describing one-point measures was developed by Kassinos and 

Reynolds [1] . They introduced the concept of one-point turbulence 

structure tensors, which have been used for both modeling and 

turbulence diagnostic purposes [2,3] . They also demonstrated that 

two turbulent fields can have the same Reynolds stress and still 

have different turbulence structure leading to a difference in the 

interaction between the turbulence and the mean flow field. This 

means that a description of turbulence based solely on Reynolds 

stress is fundamentally incomplete. Some turbulence structure in- 

formation must be included for a complete one-point description. 

The definition of turbulence structure tensors is based on the 

vector potential of the fluctuating velocity field. A prerequisite for 

computing the tensors is thus the ability to compute the vector 
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potential. While the three-dimensional vector potential has been 

used in several algorithms involving fluid flow [4–10] , and descrip- 

tions of how to compute them for general domains exist [11–14] , 

the computation of the turbulence structure tensors has, until re- 

cently, been limited to simple geometries [2] . Recently, however, a 

general framework for the computation of the turbulence structure 

tensors has been proposed [15] . 

In [15] it was also pointed out that the computations of the 

structure tensors for turbulent channel flow presented in [2] used 

an inconsistent set of boundary conditions for the computation of 

the vector potential. It was claimed that this had no influence on 

the computed turbulence structure tensors since the velocity field 

reconstructed by the vector potential only had a constant offset 

when compared to the original velocity field. In this paper it is 

shown that this is unfortunately not the case. Based on a highly 

resolved LES simulation, the turbulence structure tensors are com- 

puted both using the previously employed boundary conditions 

and a consistent set of boundary conditions. The results exhibit 

considerable differences in a significant portion of the domain. 

2. Turbulence structure tensors 

Using index notation, the vector potential, ψ i , commonly called 

the stream function, is defined by the following relations 

u i = εi jk ψ k, j , ψ i,i = 0 , ψ i,kk = −ω i , (1) 

where u i and ω i are the fluctuating parts of the turbulent veloc- 

ity and vorticity fields, respectively, ε ijk is the cyclic permutation 

symbol, and indices found after a comma denote differentiation. 

In the above notation, the components of the Reynolds stress, 

R ij , which are also referred to as the components of componental- 

ity, can be expressed in terms of the stream function as follows 
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R i j = 〈 u i u j 〉 = εipq ε jrs 〈 ψ q,p ψ s,r 〉 , (2) 

where 〈 · 〉 denotes averaging. By employing the well known re- 

lation between the product of cyclic permutation symbols and the 

Kronecker delta, δij , the following constitutive relation is obtained 

R i j + D i j + F i j − (C i j + C ji ) = 2 kδi j , (3) 

where 2 k = R kk is twice the turbulence kinetic energy, and the 

various structure tensors, and their associated normalized and 

anisotropic forms, are defined as follows: 

Componentality R i j = εipq ε jrs 〈 ψ q,p ψ s,r 〉 r i j = R i j /R kk 

˜ r i j = r i j − δi j / 3 , (4) 

Dimensionality D i j = 〈 ψ k,i ψ k, j 〉 d i j = D i j /D kk 

˜ d i j = d i j − δi j / 3 , (5) 

Circulicity F i j = 〈 ψ i,k ψ j,k 〉 f i j = F i j /F kk 

˜ f i j = f i j − δi j / 3 , (6) 

Inhomogenity C i j = 〈 ψ i,k ψ k, j 〉 c i j = C i j /D kk 

˜ c i j = c i j − c kk δi j / 3 . (7) 

The lower case letters represent the normalized tensors and 

˜ (. ) 

denotes the anisotropic form. The various structure tensors carry 

complementary statistical information about the turbulence, and 

detailed discussions of their physical interpretation can be found 

in [1,2,16] . Here, only a short description is provided. 

The componentality, or Reynolds stress, provides information 

about the amplitude of the various components of the fluctuating 

velocity field. The dimensionality is a measure of the spatial ex- 

tent of the turbulent structures. A small value of dimensionality 

means that there is a large coherence length present in the turbu- 

lent field in that direction. This indicates the presence of elongated 

structures in that direction. The circulicity is a measure of the av- 

erage large scale circulation in the turbulent field. A large value of 

circulicity is thus an indicator of the presence of “vortical” eddies 

with axis oriented in a particular direction. Finally, the inhomo- 

geneity tensor is a measure of the deviation from a homogeneous 

turbulence state. This interpretation of the inhomogeneity tensor is 

supported by the observation that Eq. (7) can be recast, using the 

Euclid gauge condition ( ψ i,i = 0 ), into the following form 

C i j = 〈 ψ i ψ k, j 〉 ,k , (8) 

which clearly is zero for homogeneous turbulence. 

2.1. Anisotropy measures 

The anisotropy tensors associated with componentality, dimen- 

sionality, and circulicity are symmetric second rank trace-free ten- 

sors. This means that they have two independent anisotropy in- 

variants that can be used to characterize the anisotropy state of 

the tensors. One commonly used set of invariants is 

II x = − 1 

2 

x i j x ji (9) 

I I I x = 

1 

3 

x i j x jk x ki . (10) 

For these tensors all possible states fall within the Lumley triangle 

[17] in (I I I x , −I I x ) -space. One useful way to characterize a turbu- 

lent flow is to plot the invariant coordinates for different positions 

in the physical domain. This results in a graphical representation of 

the change in turbulence structure as a parametric function of po- 

sition, which is very useful for analyzing the flow. This method will 

be employed to highlight the differences in the turbulence struc- 

ture predicted using the different boundary conditions. 

3. Boundary conditions for the vector potential 

For general multiply connected domains, such as a plane chan- 

nel flow, an appropriate set of boundary conditions for the vector 

potential takes the following form [12,15] 

εi jk ψ k, j = εi jk n j u k and n i ψ i = 0 on �, (11) 

where � denotes the boundary of the computational domain and 

n i is its unit normal. 

As pointed out in [15] , the computations of the structure ten- 

sors for turbulent channel flow presented in [2] used an inconsis- 

tent set of boundary conditions for the computation of the vec- 

tor potential. The boundary conditions used for these calculations 

were of the form 

εi jk n j ψ k = 0 and ψ i,i = 0 on �. (12) 

It was then claimed that this had an insignificant effect on the 

computed turbulence structure tensors, since it only leads to a 

constant offset of the velocity field reconstructed from the vector 

potential. This is, however, not the case. A constant velocity field 

is reconstructed from a stream function with non-zero gradients, 

which necessarily also changes the turbulence structure tensors. 

Consider a turbulent channel flow domain aligned with the co- 

ordinate axis such that x is the streamwise coordinate, y is the wall 

normal coordinate, and z is the spanwise coordinate. A constant 

velocity field in the streamwise direction is then given by 

c i = εi jk ψ k, j , (13) 

where c i = cδ1 i and c is a constant. The vector potential of c i takes 

the form 

ψ i = cyδ3 i + constant. (14) 

This yields the following partial derivatives of the vector potential 

ψ i, j = cδ3 i δ2 j , (15) 

which is clearly non-zero and will thus contribute to the turbu- 

lence structure tensors. 

4. Computational setup 

A highly resolved LES simulation of a turbulent channel flow 

with Re τ = 395 has been carried out on a domain with dimensions 

(2 πH , 2 H, πH ), where H is the channel half height. The code used 

for this simulation was the incompressible flow solver Cliff from 

Cascade Technologies. It is an unstructured collocated nodal-based 

finite volume code that solves the primitive variable Navier–Stokes 

equations using a fractional-step method. It is algorithmically simi- 

lar to the CDP code, which is described in [18–20] . After each step, 

the required Poisson equations are solved in order to compute the 

stream function, and the structure tensors are computed based on 

this calculation. The coordinate system is aligned such that x is the 

streamwise direction, y is the wall normal direction and z is the 

spanwise direction. This is the same case as presented in [2] . The 

number of computational points used in the different directions 

are (N x , N y , N z ) = (87 , 169 , 156) , which results in the near wall res- 

olution (d x + , d y + , d z + ) = (30 , 0 . 4 , 8) . 

For this configuration, the structure tensors were computed us- 

ing both the inconsistent boundary conditions from Eq. (12) and 

the consistent boundary conditions found in Eq. (11) . When the 

boundary conditions in Eq. (12) are employed, the calculation of 
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