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a b s t r a c t 

The increasing computational capacity of current computing technologies makes feasible the application 

of predictive high-resolution mathematical models for studying physical phenomena. Additionally, this 

can be enhanced if those methods are incorporated to some optimization method in order to perform 

inverse modeling. In this paper, an optimization procedure based on the adjoint equations is used for 

the reconstruction of information in a 2D Shallow Water model previously developed and proved to be 

fast, robust and accurate. The continuous adjoint approach used for the evaluation of the gradient that 

is introduced in a gradient-based optimizer. Furthermore, the computation of both physical and adjoint 

systems is accelerated by the use of GPU programming. Even though notable speed-ups are achieved with 

this technique they are only possible in small to medium size grids due to memory limitations. A novel 

checkpointing strategy is proposed to allow data handling in these devices hence offering the possibility 

to overcome that limitation. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Nowadays, the computational resources available for simulation 

purposes open new possibilities that previously were prohibitive. 

The increasingly efficient implementations of numerical tools al- 

low the application of accurate mathematical models for predic- 

tion of physical problems in many engineering disciplines. More- 

over, this increasing predictive capability allows their application 

for detailed response studies. A special field of application is com- 

putational fluid dynamics where, using different approaches, the 

flow field is characterized providing useful information [1] . 

Another perspective of predictive tools is their application for 

inverse modeling. In fact, there are many developments relative to 

inverse design based on high-fidelity simulations with applications 

on noise reduction in car aerodynamics [2] , design optimization of 

cavitating flow with vapor minimization [3] and the classical study 

of drag and lift improvements by means of shape optimization [4] . 

Each inverse problem is concerned with the minimization of some 

functional. In other words, the optimization problem can be for- 

mulated as a minimization problem stated as 

minimize 
U 

J (U , U 

∗, ω) 

subject to W(U , ω) = 0 in � × [0 , T ] 
(1) 
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where the performance function is frequently written as a squared 

deviation in terms of an objective quantity, U 

∗ as 

J (U , U 

∗, ω) = 

1 

2 

∫ T 

0 

∫ 
�
Ed Sd t = 

1 

2 

∫ T 

0 

∫ 
�
( U ( ω) − U 

∗) 2 d Sd t 

(2) 

It establishes the error in time [0, T ] and space � produced by 

using a set of parameters, geometry or particular conditions ω in a 

model W which produces the physical variables U . Inverse design 

is then the process to find those optimal parameters ω 

∗ that allow 

to obtain the closest solution U to U 

∗ by modifying such variable 

conditions to be controlled. Difficulties appear when the relation- 

ship between the functional (2) and the controlled parameters is 

not known. In particular, when the controlled variable is related to 

flow conditions, the optimal solution may not be easily obtained. 

Usually, the mathematical model W that governs the physical phe- 

nomena, is a set of non-linear PDEs. A solution is the development 

of the adjoint equations of the mathematical model to obtain the 

sensitivities of the functional J to the variables that are controlled 

[5] . In the present work the governing equations are the Shallow 

Water Equations (SWE), widely used for the modelization of free 

surface flows when horizontal scales are larger than vertical. The 

range of problems where they can be applied covers simulation of 

flooding events [6–8] , open-channel flow [9–11] and even the in- 

teraction with sedimentary processes [12,13] . 
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There are several techniques that can be applied for the nu- 

merical resolution of these type of equations such as [14–19] . The 

stability, well-balancing and accuracy of the solution provided by 

these methods usually implies an enormous computational effort 

that may result a drawback when dealing with practical applica- 

tions. In order to achieve a trade-off between numerical quality 

and computational requirements, a well-balanced first order Up- 

wind (FOU) scheme such as [20] is used in this work for solving 

both, the physical problem and the adjoint equations. With inde- 

pendence of the numerical solver chosen, a large amount of arith- 

metical operations are required to reach the solution. 

A recent advance in computing is the design of hardware ac- 

celerators to perform faster mathematical operations following the 

SIMT paradigm. The most common approach is the adaptation of 

the Graphical Processing Units (GPU) for dealing not only with 

graphics but with general purpose computing [21,22] . This new 

computational scheme is very recent and it was named General 

Purpose Graphical Procesing Units (GPGPU) computing. It allows 

developers to exploit the computational capabilities of these many- 

core devices by developing massively parallel algorithms. In the 

case of the numerical solvers in general, and their application 

to 2D free surface modeling in particular, explicit finite volume 

schemes are well suited to work efficiently on these processors. 

Some implementations such as [23–27] deal with them. While 

originally these devices reached their maximum performance on 

structured grids, recent advances extend their efficient application 

to unstructured meshes [28–30] . The adaptation of the GPU com- 

putation to the combined problem of 2D physical equations and 2D 

adjoint equations is one of the original parts in the present work. 

The unsteady character of the physical equations leads to time- 

dependent information for the adjoint equations which, in fact, 

have the same unsteady character. Consequently, as the adjoint 

solver requires information of the flow variables previously com- 

puted, data storage issues may appear when dealing with large 

problems. The basic option is to store all the information provided 

by the physical model and then use it to compute the adjoint 

equations. However, this option has the inconvenience of the enor- 

mous memory requirement. In addition, and when dealing with 

GPU computing, the memory is fixed and not expandable. There- 

fore, the amount of memory used should be less or equal to that 

available in the GPU. At this moment, this size usually goes from 6 

to 24 GB. So, in the case of large physical and/or temporal domains, 

it represents an important restriction. In this work, a checkpointing 

strategy is used and deeply detailed, making feasible the applica- 

tion of the adjoint method to calculate the 2D SWE sensitivities on 

GPUs. This represents a novelty in this field. 

This work is structured as follows: first, in Section 2 , the set 

of physical equations and the numerical solver used for their inte- 

gration is presented. Next, details regarding the adjoint equations 

used in this work as well as the numerical method used for their 

integration are explained. Section 4 deals with how the optimiza- 

tion problem is stated and a synthetic test case is proposed for 

illustrating the technique. In the same section a GPU implemen- 

tation is detailed and compared with a CPU implementation. As a 

result, the memory appears to be a limitation that is next solved 

providing details of the implementation of a checkpoint strategy. 

Section 5 contains an application which aims at recovering a pre- 

viously computed water depth by obtaining the inlet hydrograph 

used to compute it. Section 6 outlines the conclusions obtained in 

the work. 

2. Physical model: shallow water equations 

Two dimensional free surface flows are commonly well- 

described by means of the two-dimensional version of the St. 

Venant equations, also known as Shallow Water Equations (SWE). 

They are obtained depth-integrating the Navier-Stokes equations 

using the hydrostatic approximation under the assumption of hori- 

zontal length scale larger than the vertical length scale. The system 

of equations W = {W h , W q x , W q y } represents mass and momentum 

conservation 

W h : 
∂h 

∂t 
+ 

∂(q x ) 

∂x 
+ 

∂(q y ) 

∂y 
= i e 

W q x : 
∂(q x ) 

∂t 
+ 

∂ 

∂x 

(
hu 

2 + 

1 

2 

gh 

2 
)

+ 

∂(hu v ) 
∂y 

= gh (S 0 x − S f x ) 

W q y : 
∂(q y ) 

∂t 
+ 

∂(hu v ) 
∂x 

+ 

∂ 

∂y 

(
h v 2 + 

1 

2 

gh 

2 
)

= gh (S 0 y − S f y ) (3) 

where h is water depth, ( hu, hv ) are unitary discharges in x and y 

axis respectively, ( u, v ) are depth averaged velocity vector compo- 

nents and g is the gravitational acceleration aligned with z axis. 

The right hand side in (3) includes source terms. For the mass 

equation i e is an effective mass contribution rate (i.e. rain, evapo- 

ration or source). The momentum equations include the bed slopes 

( S 0 x , S 0 y ) in terms of the bed level z b as 

S 0 x = −∂z b 
∂x 

S 0 y = −∂z b 
∂y 

(4) 

and friction losses, where S fx and S fy are the (dimensionless) com- 

ponents of the friction slope written in terms of the Gauckler- 

Manning’s roughness coefficient n : 

S f x = 

n 

2 u 

√ 

u 

2 + v 2 
h 

4 / 3 
, S f y = 

n 

2 v 
√ 

u 

2 + v 2 
h 

4 / 3 
(5) 

2.1. Numerical solver 

For simplicity, system (3) is compactly written as: 

∂U 

∂t 
+ 

−→ ∇ · E = R (6) 

being U = (h, q x , q y ) T the conserved variables, E = (F , G ) with 

F = 

(
q x , 

q 2 x 

h 

+ 

1 

2 

gh 

2 , 
q x q y 

h 

)T 

, G = 

(
q y , 

q x q y 

h 

, 
q 2 y 

h 

+ 

1 

2 

gh 

2 

)T 

(7) 

and the source term R defined as follows 

R = 

(
i e , gh (S 0 x − S f x ) , gh (S 0 y − S f y ) 

)T 
(8) 

In order to obtain a numerical solution from a finite volume ap- 

proach, Eq. (6) is integrated over each computational cell �i with 

area A i : 

∂ 

∂t 

∫ 
�i 

U d� + 

∫ 
�i 

( 
−→ ∇ · E ) d� = 

∫ 
�i 

R d� (9) 

It is possible to define a Jacobian matrix J n of the normal flux 

E · n and to diagonalise it in terms of matrices � and P where the 

eigenvalues and eigenvectors play an important role: 

J n = 

∂( E · n ) 

∂U 

= P � P 

−1 (10) 

where n = (n x , n y ) is the outward unit normal vector to �i . Roe’s 

linearization [31] allows us to define locally an approximate matrix 
˜ J n at each cell edge k whose eigenvalues ˜ λm and eigenvectors ˜ e m 

can be used to express the differences in vector U [32] : 

δU k = U i − U j = 

3 ∑ 

m =1 

( ̃  α ˜ e ) m 

k (11) 

where i and j are the indexes of the cells sharing edge k and ˜ αm 

k 
is 

the wave strength. This enables: 

δ( E · n ) k = ̃

 J n δU k = ̃

 J n 

3 ∑ 

m =1 

( ̃  α ˜ e ) m 

k (12) 
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