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a b s t r a c t 

A fast method is developed to efficiently compute three-dimensional Brinkman flows induced by triply- 

periodic arrays of points forces and regularized forces. For point forces, we decompose the periodic 

Brinkman velocity into the sum of two series: one in real space and one in Fourier space. To do the 

splitting, we create a regularized solution with special decay properties so that both summands will de- 

cay in a Gaussian manner. For regularized forces, the same methodology is used to split the regularized 

velocity, and again, Gaussian decay of the summands is achieved. When there are N forces ( N periodic 

arrays), the overall complexity is O(N 

2 ) . We discuss different ways to reduce the complexity to O(N 

3 / 2 ) 

and to O(N log N) . Finally, we present two sets of numerical results. The first validates the computational 

complexity of the algorithm and the second illustrates how this method can be used to study micro- 

scopic flows of organisms in a porous medium. A simple dumbbell model of swimmers is implemented 

that exhibits a large scale flow that varies based on the number of swimmers and the resistance within 

the porous medium. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

The Brinkman equation is a linear model of fluid flow through 

porous media. The model describes a viscous fluid flowing through 

random, sparse arrays of obstructions such as fibers or dissolved 

polymer chains [1–3] . There have been numerous biological appli- 

cations for which the Brinkman model has been utilized. For ex- 

ample, multiple studies have explored flow through the endothe- 

lial surface layer [4–10] , while some others are focused on flow 

through basement membranes [11] , biofilms [12,13] , and blood 

vessels with blockages or blood clots [7,14–19] . In addition, the 

Brinkman model has recently been used to study a swimming or- 

ganism in 2D and 3D [20–26] . 

In dimensionless form, the incompressible Brinkman equations 

are given by 

−∇ p + 

(
� − α2 

)
u + F = 0 , (1a) 

∇ · u = 0 , (1b) 

where u is the fluid velocity, p is the pressure, and F is the body 

force. Letting L be a characteristic length scale and K the Darcy 

permeability of the medium, the parameter α = L / 
√ 

K represents 
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the dimensionless permeability factor. This factor can be thought 

of as a measure of extra resistance in the fluid due to obstacles 

that comprise the porous medium. The velocity is scaled by a char- 

acteristic velocity, U , and the pressure and force are scaled by 

μU/ L and μU/ L 

2 , respectively. When F is a point force, the so- 

lution to (1a) –(1b) is called a Brinkmanlet (see Section 2.1 ). When 

F is a regularized force, the solution to (1a) –(1b) is called a regu- 

larized Brinkmanlet (see Section 2.2 ). In the limit as α → 0, the 

Brinkman equations become Stokes equations, and the (regular- 

ized) Brinkmanlet becomes a (regularized) Stokeslet [20] . 

In this paper, we are interested in developing methods to study 

microscopic Brinkman flows generated by active matter in a triply- 

periodic domain. Examples of active matter include biofilaments 

and molecular motors, collective motion of microorganisms such 

as sperm or bacteria, and active colloids [27,28] . Collective motion 

can lead to self organization into arrangements much larger than 

the individual organism or structure. For example, sperm at a high 

density have been observed to line up and form ‘sperm trains’ [29] , 

as well as self organize into arrays of sperm vortices [30] . Bacteria 

also self organize into dynamic clusters and can form veils, vor- 

tices, and jets [31–33] . Comprehensive computational models and 

analysis has been completed to understand the role of hydrody- 

namic, steric, and chemical interactions on collective motion of a 

large number of structures [34–42] . In models where the domain 

was not confined by a wall, periodic boundary conditions were im- 

plemented. Many studies have assumed the fluid is governed by 

http://dx.doi.org/10.1016/j.compfluid.2016.04.007 

0045-7930/© 2016 Elsevier Ltd. All rights reserved. 

http://dx.doi.org/10.1016/j.compfluid.2016.04.007
http://www.ScienceDirect.com
http://www.elsevier.com/locate/compfluid
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2016.04.007&domain=pdf
mailto:zhoangngan@gmail.com
mailto:sdolson@wpi.edu
mailto:kleiderman@ucmerced.edu
http://dx.doi.org/10.1016/j.compfluid.2016.04.007


56 H.-N. Nguyen et al. / Computers and Fluids 133 (2016) 55–67 

the Stokes equations, although the natural environments of many 

swimmers can be much more complex. The addition of obstacles in 

the fluid, such as fibers or polymer chains, may lead to other in- 

teresting dynamics not observed in the Stokes regime. A fast sum- 

mation method has not been developed previously for a Brinkman 

model of a porous medium and this is the focus here. 

Formally, due to the linearity of the Brinkman equation, 

Brinkman flows due to triply-periodic arrays of point forces and 

regularized forces can be computed as the periodic summations of 

Brinkmanlets and regularized Brinkmanlets, respectively. However, 

due to the 1/ r 3 decay of (regularized) Brinkmanlets, these triply- 

periodic sums are not absolutely convergent and thus, the direct 

summation is divergent. One common approach to circumvent this 

type of difficulty is to use Ewald or Ewald-like summation methods 

[43–47] . In this paper, we follow Beenakker’s approach [43,47,48] , 

and first decompose the (regularized) Brinkmanlet into the sum 

of a ‘local’ term and a ‘global’ term. Here, we point out that the 

‘global’ term is, in fact, chosen to be a regularized Brinkmanlet. 

However, it is a regularized Brinkmanlet related to efficiency and 

the splitting of the ‘local’ and ‘global’ domain, not necessarily the 

regularized Brinkmanlet associated with the regularized force in 

the physical model. This will become more clear when we describe 

the details of the method. The periodic summation of the ‘local’ 

term is performed in real space and the periodic summation of 

the ‘global’ term is performed in Fourier space using the Poisson 

summation formula. For appropriate choices of regularization, both 

the real space sum and the Fourier space sum will converge very 

fast. However, the computational complexity of the direct Ewald 

summation in the case of N triply-periodic arrays of (regularized) 

forces is O(N 

2 ) . There have been many proposed fast methods to 

reduce the complexity to O(N 

3 / 2 ) and O(N log N) for periodic elec- 

tric potentials and periodic Stokes flows [49–53] . We incorporate 

one of these methods [53] to reduce the complexity of our formu- 

lation to O(N log N) . 

The outline of our paper is as follows. In Section 2 , we 

present known results about the Brinkmanlet and the regularized 

Brinkmanlet in three dimensions and provide new insight about 

the decay rate of their difference. This result is then used in 

Section 3 to develop an Ewald-like summation formula for triply- 

periodic (regularized) Brinkman flows. In Section 3 , we also discuss 

ways to reduce the complexity of our formulation to O(N 

3 / 2 ) and 

O(N log N) . In Section 4 , we demonstrate the computation time 

and accuracy of the O(N log N) method, and present initial results 

for a simplified dumbbell model of an active suspension. 

2. Background 

In this section, we review known results about the Brinkman- 

let and the regularized Brinkmanlet in three dimensions (see, for 

example, [20] ), and state the problem for triply-periodic Brinkman 

flows. We also provide new insight into the decay rate of the dif- 

ference between the Brinkmanlet and the regularized Brinkman- 

let. This decay rate plays an important role in constructing the fast 

summation method for triply-periodic flows in Section 3 . 

2.1. Brinkmanlet 

The Brinkmanlet, or the fundamental solution of the Brinkman 

equation, is the solution to (1a) –(1b) when the body force is a 

point force F (x ) = f δ(x − x 0 ) . Here δ( · ) is the Dirac delta func- 

tion, f is the force strength, and x 0 is the force location. To find 

the Brinkmanlet in three dimensions, we proceed as follows. 

Taking the divergence of the momentum Eq. (1a) and using the 

continuity Eq. (1b) , we have 

�p(x ) = ∇ ·
(
f δ(x − x 0 ) 

)
. (2) 

With G ( x ) as the fundamental solution of the Laplace equation, 

�G (x ) = δ(x ) , the solution to (2) is 

p(x ) = f · ∇ G (x − x 0 ) . (3) 

Plugging this expression for pressure back into the momentum 

equation, we have 

(� − α2 ) u (x ) = ∇ p(x ) − f δ(x − x 0 ) 

= f · ∇∇ G (x − x 0 ) − f �G (x − x 0 ) (4) 

= f ·
(∇∇ − I �

)
G (x − x 0 ) , 

where I is the identity matrix. Now implicitly define B ( x ) as the 

solution to the non-homogeneous modified Helmholtz equation (
� − α2 

)
B (x ) = G (x ) so that the solution to (4) is 

u (x ) = u (x , x 0 )[ f ] = f ·
(∇ ∇ − I �

)
B (x − x 0 ) . (5) 

This is the Brinkman velocity (Brinkmanlet) observed at the point 

x due to a point force of strength f located at x 0 . Further, with 

r = ‖ x ‖ 2 for x ∈ R 

3 , we have 

G (x ) = G (r) = − 1 

4 π r 
, and B (x ) = B (r) = 

1 − e −αr 

4 πα2 r 
. 

After some manipulations, the Brinkmanlet (5) can be written as 

u (x , x 0 )[ f ] = f H 1 (r) + 

(
f · ( x − x 0 ) 

)
( x − x 0 ) H 2 (r) , (6) 

where r = ‖ x − x 0 ‖ 2 and 

H 1 (r) = − 1 

4 πα2 r 3 
+ 

e −αr 

4 π r 

(
1 + 

1 

αr 
+ 

1 

α2 r 2 

)
, 

H 2 (r) = 

3 

4 πα2 r 5 
− e −αr 

4 π r 3 

(
1 + 

3 

αr 
+ 

3 

α2 r 2 

)
. (7) 

In the limit as α → 0, H 1 ( r ) → 1/(8 π r ) and H 2 ( r ) → 1/(8 π r 3 ), and, 

thus, the Brinkmanlet approaches the Stokeslet. 

2.2. Regularized Brinkmanlet 

The regularized Brinkmanlet is the solution to the Brinkman 

Eqs. (1a) –(1b) when the Dirac delta function in the above section 

is replaced by a smooth approximation. Usually, this approxima- 

tion, called a blob, is chosen to be a radially symmetric function 

ϕ 

ε (x ) = ϕ 

ε ( ‖ x ‖ 2 ) . The blob parameter ε controls the concentra- 

tion of the blob ϕ 

ε ( x ) near the origin, and, as ε goes to zero, ϕ 

ε ( x ) 

approaches the Dirac delta function centered at the origin. Simi- 

lar to the regularized Stokeslet [54,55] , we can think of the regu- 

larized Brinkmanlet approximately as the Brinkman flow due to a 

solid ball of radius ε centered at x 0 . Below, we review the deriva- 

tion of the regularized Brinkmanlet, as detailed in [20] . 

Given an arbitrary radially symmetric blob ϕ 

ε (x ) = ϕ 

ε ( ‖ x ‖ 2 ) , 
following the same steps as in Section 2.1 , we can write the reg- 

ularized Brinkmanlet due to the regularized force F (x ) = f ϕ 

ε (x −
x 0 ) of strength f located at x 0 in the following form 

u 

ϕ ε (x , x 0 )[ f ] = f · ( ∇ ∇ − I �) B 

ϕ ε (x − x 0 ) , (8) 

where �G 

ϕ ε (x ) = ϕ 

ε (x ) , and (� − α2 ) B ϕ 
ε 
(x ) = G 

ϕ ε (x ) . Since 

ϕ 

ε ( x ) is a radially symmetric function, both G 

ϕ ε (x ) and B ϕ 
ε 
(x ) 

are also radially symmetric. Thus, by defining r = ‖ x − x 0 ‖ 2 , after 

some manipulations, we have 

u 

ϕ ε (x , x 0 )[ f ] = f H 

ϕ ε 

1 
(r) + (f · ( x − x 0 ) )(x − x 0 ) H 

ϕ ε 

2 
(r) , (9) 

where 

H 

ϕ ε 

1 
(r) = −

r 
(
B 

ϕ ε (r) 
)′′ + 

(
B 

ϕ ε (r) 
)′ 

r 
, and 

H 

ϕ ε 

2 
(r) = 

r 
(
B 

ϕ ε (r) 
)′′ −

(
B 

ϕ ε (r) 
)′ 

r 3 
. (10) 

In the limit as α → 0, this regularized Brinkmanlet approaches a 

regularized Stokeslet. Note that the Brinkmanlet is singular at the 

force location x = x 0 , while the regularized Brinkmanlets are finite 

everywhere. 
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