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a b s t r a c t 

In this paper, we construct second- and third-order non-oscillatory shock-capturing hyperbolic residual- 

distribution schemes for irregular triangular grids, extending the schemes developed in J. Comput. Phys., 

300 (2015), 455–491 to discontinuous problems. We present extended first-order N- and Rusanov-scheme 

formulations for a hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffu- 

sion term does not have any adverse effect on the solution of inviscid problems for a vanishingly 

small viscous coefficient. We then construct second- and third-order non-oscillatory hyperbolic residual- 

distribution schemes by blending the non-monotone second- and third-order schemes with the extended 

first-order schemes as typically done in the residual-distribution schemes, and examine them for dis- 

continuous problems on irregular triangular grids. We also propose to use the Rusanov scheme to avoid 

non-physical shocks in combination with an improved characteristics-based nonlinear wave sensor for 

detecting shocks, compression, and expansion regions. We then verify the design order of accuracy of 

these blended schemes on irregular triangular grids. 

Published by Elsevier Ltd. 

1. Introduction 

Accurate detection of discontinuities are of great interest to 

many practical applications. Equally, accurate prediction of solution 

and solution gradients in the smooth regions on irregular grids 

are also essential in estimating many important physical quantities 

such as viscous stresses, vorticity, and heat flux. In Ref. [1] , we pre- 

sented new second- and third-order hyperbolic advection-diffusion 

Residual-Distribution (RD) schemes called the RD-CC2 and RD-CC3 

schemes, respectively, and demonstrated that these schemes pre- 

dict solution and solution gradients efficiently and accurately on 

anisotropic and irregular triangular grids. These schemes are con- 

structed based on the hyperbolic method [2] , where the diffusion 

term is formulated as a hyperbolic system by including the so- 

lution gradients as extra variables, but with a new design prin- 

ciple that ensures the cell residual vanishes for exact quadratic 

(for second-order) and cubic (for third-order) solutions for arbi- 

trary triangular elements. The new design principle was proposed 

in Ref. [1] and found critical for smooth and accurate predictions 

of solution gradients both on the physical geometry and within 

the domain for highly irregular elements. These schemes also pro- 
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duce solution and solution gradients with an equal order of accu- 

racy on fully irregular elements. These schemes, however, produce 

oscillatory solution around discontinuities (such as a shock) and 

therefore, some special treatment is needed to prevent such oscil- 

latory solutions. The objective of the work presented in this pa- 

per is, therefore, to develop non-oscillatory versions of the RD-CC2 

and RD-CC3 schemes with a mechanism to avoid entropy-violating 

shocks. 

Before discussing strategies for constructing non-oscillatory 

schemes, we remark that the RD-CC2 and RD-CC3 schemes have 

an unconventional feature compared with other RD schemes. These 

schemes have the advective term coupled with the diffusive term 

even in the advection limit via the extra variables introduced to 

formulate diffusion as a hyperbolic system. In other words, vanish- 

ingly small diffusion coefficient results in a pure advection scheme 

coupled with the equations for the extra variables. The coupling 

is advantageous becasue it helps improve the order of accuracy 

of the advection scheme, typically, by one order [1] . However, a 

conventional non-oscillatory technique developed for the advection 

equation, which does not take into account the coupling, may not 

be immediately applicable to the RD-CC2 and RD-CC3 schemes. 

For these reasons, we consider the advection-diffusion equation 

throughout the paper although our target problems are purely ad- 

vective, and seek a non-oscillatory technique that is simple and 

easy to apply to these schemes. 
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For the construction of non-oscillatory schemes, few approaches 

have been proposed that are widely used within the RD commu- 

nity. These are: (1) nonlinear advection schemes such as the mod- 

ified N-scheme or the Positive-Streamwise-Invariant (PSI) scheme 

[3] , and limited schemes [4] , where a high-order smooth solution 

is recovered from a first-order positive scheme with a smooth- 

ness indicator, and (2) blended schemes [5] , in which a first-order 

and high-order schemes are blended through a nonlinear blending 

function. Although these approaches are different, one may recover 

an identical scheme from either of these approaches [6,7] . These 

nonlinear schemes are first developed for the scalar advection 

equation and later extended for a system of equations [8,9] . These 

schemes are widely used within the RD community [6,7,10–12] , 

and applied to advection and advection-diffusion [13–16] , steady 

inviscid [12,17,18] , steady Navier–Stokes [19] , turbulent compress- 

ible flows [20] , and unsteady [12,21,22] problems. It may also be 

possible to employ an artificial viscosity technique as widely used 

in the stabilized finite-element methods, e.g., Refs. [23,24] , because 

the RD schemes can be formulated as Petrov–Galerkin schemes. 

Among various approaches, in this paper, we consider the 

blending approach [5,7,12] for constructing non-oscillatory RD-CC2 

and RD-CC3 schemes. Specifically, we construct a monotone first- 

order scheme for the hyperbolic advection-diffusion system by ap- 

plying first-order RD schemes known to be monotone for hyper- 

bolic systems, the N-scheme and the Rusanov scheme, and then 

blend it with the RD-CC2 and RD-CC3 schemes through a nonlin- 

ear blending function similar to the one presented in, e.g., Ref. [5] . 

This strategy has been found simple, systematic, and also conve- 

nient as entropy-violating shocks can be avoided within the same 

framework. Other approaches may also be explored, but the com- 

parison of different approaches is beyond the scope of the paper 

and thus left as future work. 

We also propose a technique to avoid entropy-violating shocks 

by activating the first-order Rusanov scheme at sonic expansion. 

This approach requires accurate detection of sonic expansion. We 

therefore, perform this task by developing a new characteristics- 

based nonlinear wave sensor to accurately detect sonic expansion. 

The presented technique is an improvement to the technique re- 

ported in Refs. [25,26] , which uses divergence of the steady char- 

acteristics as a mechanism to identify whether an element is in a 

shock, rarefaction, or away from such nonlinear waves. The tech- 

nique of Refs. [25,26] , however, requires a threshold, and that is 

often very difficult to know a priori; a large threshold causes in- 

stability by high-order methods, while small thresholds lead com- 

pression waves to be treated as shocks, which in turn make the 

solution less accurate and undesirable. Here, we improve this tech- 

nique with a more accurate characteristics-based nonlinear wave 

operator that is less dependent on such thresholds. In the present 

work, the proposed characteristic-based sensor is used as an alter- 

native approach to a more traditional entropy fix technique [7,27] 

for avoiding unphysical shocks (entropy-violating solutions). An- 

other alternative is to use a special quadrature formula [26] , but 

this technique requires development of completely new high-order 

schemes and therefore, is not pursued in this study. The proposed 

sensor may also be used as a first step toward the development of 

a shock-fitting scheme [28–30] . 

In this paper, we focus on two-dimensional hyperbolic 

advection-diffusion systems and develop second- and third-order 

blended hyperbolic residual-distribution schemes for discontinu- 

ous problem on irregular triangular grids. We first demonstrate 

that the hyperbolic diffusion terms do not negatively affect the 

solution of the advection equation as the diffusion coefficient ap- 

proaches zero. We then demonstrate that these blended schemes 

can successfully detect physical discontinuities using the developed 

characteristics-based nonlinear wave sensor, and avoid unphysical 

shocks when the proposed extended Rusanov scheme is used as a 

first-order advection-diffusion scheme. Through numerical exam- 

ples, we show that the proposed schemes not only provide an ac- 

curate solution but also give accurate and smooth solution gra- 

dients (away from discontinuities) on irregular grids. This is ex- 

tremely important because, as we will demonstrate, least squares 

reconstruction of gradients, which is commonly used, could be 

very inaccurate and oscillatory even if a high-order solution is used 

as a basis for the gradient reconstruction. 

The paper is organized as follows. In Section 2 , we briefly de- 

scribe the basics of a nonlinear hyperbolic advection-diffusion sys- 

tem. In Section 3 , we present extended first-order N- and Rusanov- 

schemes for a general hyperbolic advection-diffusion system. In 

Section 4 , we review the baseline hyperbolic RD, and the second- 

and third-order hyperbolic RD schemes, proposed in Ref. [1] ; we 

use these schemes for the construction of high-order blended 

schemes, which are presented in Section 5 . In Section 6 , we dis- 

cuss how entropy-violating solutions can be avoided, followed by a 

boundary condition formulation in Section 7 . We then present nu- 

merical examples in Section 8 , demonstrating the shock-capturing 

capability of the constructed second- and third-order blended hy- 

perbolic advection-diffusion RD schemes on irregular triangular 

grids. Order of accuracy of these blended schemes is also verified 

in this section. We then summarize the presented work with some 

concluding remarks in Section 9 . 

2. General nonlinear hyperbolic advection-diffusion system and 

discretization 

Consider the following general two-dimensional nonlinear 

advection-diffusion equation: 

∂ t u + ∂ x f + ∂ y g = ∂ x (ν∂ x u ) + ∂ y (ν∂ y u ) + 

˜ s (x, y, u ) , (1) 

where f and g are nonlinear functions of u , ν = ν(u ) , and ˜ s (x, y, u ) 

denotes a source term. In this work, we only consider a constant 

diffusion coefficient, but the schemes are presented in the form 

directly applicable to nonlinear diffusion coefficient. The advec- 

tion speeds in x and y directions are therefore a (u ) = ∂ f/∂ u and 

b(u ) = ∂ g/∂ u, respectively. We reformulate the advection-diffusion 

equation in the form of a nonlinear hyperbolic advection-diffusion 

system using a preconditioning matrix P , which is to simplify the 

construction of the numerical scheme [31] : 

P 

−1 ∂U 

∂τ
+ 

∂F 

∂x 
+ 

∂G 

∂y 
= Q , (2) 

where U = [ u, p, q ] 
T 
, where the superscript T indicates the trans- 

pose, and 

P 

−1 = 

⎡ 

⎣ 

1 0 0 

0 T r /ν(u ) 0 

0 0 T r /ν(u ) 

⎤ 

⎦ , 

F = F a + F d = 

⎡ 

⎣ 

f 

0 

0 

⎤ 

⎦ + 

⎡ 

⎣ 

−p 

−u 

0 

⎤ 

⎦ , (3) 

Q = Q 

s + Q 

d = 

⎡ 

⎣ 

s (x, y, u ) 

0 

0 

⎤ 

⎦ + 

⎡ 

⎣ 

0 

−p/ν(u ) 

−q/ν(u ) 

⎤ 

⎦ , 

G = G 

a + G 

d = 

⎡ 

⎣ 

g 

0 

0 

⎤ 

⎦ + 

⎡ 

⎣ 

−q 

0 

−u 

⎤ 

⎦ , (4) 

where τ is the pseudo-time, and T r = L 2 /ν is the relaxation time 

with length scale defined as L = 1 / 2 π . In the pseudo-steady state, 
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