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a b s t r a c t 

We report about a numerical approach based on the direct numerical simulation of the Navier–Stokes 

equations for the study of wave-bottom interaction problems. A Volume of Fluid (VOF) method is coupled 

with an Immersed Boundary Method (IBM) and applied to the simulation of propagating waves over 

complex shaped bottoms. We first investigate the flow induced by a solitary wave over generic bottoms 

(i.e. a semi-circular cylinder and a sloping beach). We show that the method is able to describe various 

important features of wave-bottom interactions, including flow separation, vortex shedding and wave 

breaking, while keeping a reasonable computational effort. Then we demonstrate the capability of the 

present approach to model arbitrary shaped bottoms by simulating the run-up of a breaking solitary 

wave over a natural beach profile. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

After being generated in the open sea by wind or geophysi- 

cal events, gravity waves propagate toward the coast, carrying a 

considerable amount of energy. Close to the shore, the wave dy- 

namics changes as a result of the interaction with the bottom. This 

is the shoaling process, which may include wave breaking. Know- 

ing the mechanisms that take place during the wave shoaling is 

a key issue for many engineering applications involving sediment 

transport, civil engineering, shore protection and energy extraction. 

During the last decades, numerical simulation has proved to be a 

promising tool for the study of wave-body and wave-bottom inter- 

action problems, as demonstrated by the wide variety of numeri- 

cal methods applied to the study of waves interacting with a sub- 

merged body in the literature (e.g. [1–3] ). 

Many studies of surface waves are based on potential flow the- 

ory, under the assumption of irrotational and inviscid flow. The 

fluid equations are usually reduced to a Laplace equation for the 

velocity potential and a set of non-linear boundary conditions. Two 

families of numerical techniques using potential flow theory are 

the Boundary Element Methods [4–7] and the Spectral Methods 

[1,8–11] which are based on pertubative expansions and are able to 

model both constant- and variable-depth problems [12,13] . When 
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viscous effects such as vortex shedding and energy dissipation in 

the boundary layers have to be locally taken into account to de- 

scribe the wave dynamics, potential flow models can be coupled 

with a Navier–Stokes solver through a domain decomposition ap- 

proach [14–16] . Note that Lin and Huang [2,17] also proposed a 

vortex method to take into account the generation and shedding 

of vorticity due to the presence of a solid body. 

Another class of numerical techniques is based on the long 

wave theory using in particular the Boussinesq equations (e.g. 

[18,19] ) and the non-linear shallow-water equations [20–22] . The 

similarity between shallow-water and gas dynamics equations al- 

lows to apply efficient shock-capturing schemes, initially developed 

for Euler equations, to investigate bore dynamics resulting from 

breaking waves [23,24] . However, as both the non-linear shallow- 

water and the Boussinesq equations are based on hydrostatic or 

almost hydrostatic approximation, they fail to predict the complex 

interaction between a wave and a bottom of arbitrary shape. 

In order to capture all the flow characteristics resulting from 

a wave-body interaction problem, one may rather choose to solve 

the full incompressible Navier–Stokes equations. A major challenge 

raised by this numerical strategy deals with the treatment of the 

free surface dynamics. 

Various techniques using boundary-fitted moving grids have 

been used [3,25–27] . These methods allow an accurate interface 

tracking as the mesh fits the shape of the free surface. However, 

it can hardly be applied to complex interface deformations as 

wave breaking. Eulerian methods allow instead to use a fixed 
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grid on which the interface is free to deform. The capture of 

the interface is ensured by the convective transport of either a 

finite number of markers or a continuous function. In particular, 

the Volume of Fluid (VOF) method has been extensively used for 

the study of wave-breaking and wave run-up [28–31] as well as 

wave-body interaction [32–34] . This method has been shown to be 

able to deal with complex phenomenon as wave breaking and air 

entrainment. When the shape of the bottom remains simple, it is 

convenient to use a boundary-fitted grid associated with a no-slip 

condition. However, with such a method the computational effort 

rapidly increases when increasing the geometrical complexity 

of the boundaries. In order to treat wave dynamics problems 

with increasing complexity while keeping a reasonable compu- 

tational cost, VOF-type methods can be coupled with Immersed 

Boundary Methods (IBM). The IBM technique enables to place 

bodies of arbitrary shape in a computational domain discretized 

with a structured Cartesian grid. This numerical approach has 

already been applied to the interaction between surface waves 

and submerged obstacles [35–37] . In this type of configuration, 

the water/air interface does not cross the water/body interface. 

More recently, physical configurations involving partially immersed 

bodies (water entry of a sphere and dam break with an obstacle) 

have been investigated by Zhang et al. [38] and Zhao et al. [39] . 

In this paper, a coupled VOF-IBM method is used to simulate 

the flow induced by a solitary wave interacting with a complex 

shaped bottom. The numerical method is applied to geometries of 

increasing complexity. Both submerged and partially immersed ob- 

stacles are considered. We first investigate the flow induced by a 

solitary wave interacting with a submerged semi-circular cylinder, 

showing that our results are in good agreement with those of Klet- 

tner and Eames [3] which were obtained with a boundary-fitted 

approach. Then, the run-up of non-breaking and breaking solitary 

waves on a sloping beach is investigated and compared to detailed 

experiments of Synolakis [40] . Finally, we present simulations of 

the run-up of a breaking solitary wave on a natural beach of com- 

plex topography, the shape of which being the result of wave- 

induced sediment transport observed in laboratory experiments. 

2. Numerical method 

2.1. Governing equations and assumptions 

Let us consider two immiscible fluids, i.e. air and water, of den- 

sity ρa and ρw 

, and dynamic viscosity μa and μw 

, respectively. We 

assume the two fluids to be Newtonian and incompressible. Con- 

sidering relatively large amplitude gravity waves, we neglect the 

surface tension effects in the following. The evolution of the two- 

phase flow is then described by the one-fluid formulation of the 

Navier–Stokes equations [41] , namely 

∂V 

∂t 
+ ∇ · (V ⊗ V ) = g − 1 

ρ
∇P + 

1 

ρ
∇ · [ μ(∇V + ∇V 

T )] + f , (1) 

∇ · V = 0 , (2) 

where V , P, ρ and μ denote the local velocity, pressure, density 

and viscosity in the flow, respectively, g denotes gravity and f is a 

volume force term used to take into account solid-fluid interaction. 

The local volume fraction C of the air obeys 

∂C 

∂t 
+ (V · ∇) C = 0 . (3) 

This volume fraction equals one (resp. zero) in cells filled with 

air (resp water) while values of volume fraction lying between 0 

and 1 indicate the presence of an air-water interface. The local 

density and viscosity are computed from the volume fraction as 

ρ = Cρa + (1 − C) ρw 

and μ = Cμa + (1 − C) μw 

, respectively. In the 

present method, no interface reconstruction step is employed so 

Fig. 1. Schematic view of the set-up. The solitary wave of amplitude H and depth h 

is initially placed at x 0 . The vertical position of the air-water interface is h + η while 

that of the intersection point between the air-water interface and the immersed 

boundary is y = h + R , R being the run-up elevation. 

the numerical thickness of the interface is not strictly zero, but 

typically spreads over three grid cells [42] . Eqs. (1) - (3) are solved 

throughout the entire computational domain, including the actual 

fluid domain and the space occupied by the solid. 

2.2. Modeling of the immersed solid 

Following the IBM method [41] , the interaction between the 

fluid and the immersed body is carried out by the addition of a 

volume force term f in (1) . We first define a solid volume fraction 

α( x ) accounting for the presence of the immersed solid. The value 

of the parameter α is set to 1 in the solid region and 0 in the fluid 

region. A transition region is introduced, where α values are laying 

between 0 and 1. Here we consider the particular case of fixed bot- 

tom or bottom-seated obstacles. Assuming that the bottom shape 

is described by a function h b ( x ) (see Fig. 1 ), we define the solid 

volume fraction as [41] 

α(x ) = 

1 

2 

{ 

1 − tanh 

(
y − h b (x )) 

ληi �

)} 

(4) 

λ = | n x | + | n y | + | n z | (5) 

ηi = 0 . 065(1 − λ2 ) + 0 . 39 (6) 

where n = (n x , n y , n z ) is the normal outward unit vector at the sur- 

face, ηi is a parameter controlling the thickness of the transition 

region and � is a characteristic grid size ( � = 

√ 

2 �x for a 2D uni- 

form grid). The force f is then defined as 

f = α
V s − ˜ V 

�t 
, (7) 

where �t is the time step used for the time-advancement, V s is 

the local velocity imposed in the solid object ( V s = 0 here), and 

˜ V 

is an intermediate velocity field without considering the immersed 

object. For more precision, see Section 2.4 . 

2.3. Time stepping and spatial discretization 

Eqs. (1) –(3) are solved on a staggered Cartesian grid following 

a finite-volume approach [43] . The time integration of (1) and (2) 

is performed via a third-order Runge–Kutta method for all terms 

except the viscous term for which a second-order semi-implicit 

Crank–Nicolson scheme is used [44] . The incompressibility condi- 

tion (2) is satisfied at the end of each time step through a pro- 

jection method. The transport equation of volume fraction (3) is 

solved by using a modified version of the flux-corrected trans- 

port scheme proposed by Zalesak [45] . Domain decomposition and 

Message-Passing-Interface (MPI) parallelization is performed to fa- 

cilitate simulation of large number of computational cells. 
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