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a b s t r a c t 

In this study, we present a high-order numerical method based on a combined compact integrated RBF 

(IRBF) approximation for viscous flow and fluid structure interaction (FSI) problems. In the method, the 

fluid variables are locally approximated by using the combined compact IRBF, and the incompressible 

Navier-Stokes equations are solved by using the velocity-pressure formulation in a direct fully coupled ap- 

proach. The fluid solver is verified through various problems including heat, Burgers, convection-diffusion 

equations, Taylor-Green vortex and lid driven cavity flows. It is then applied to simulate some FSI prob- 

lems in which an elastic structure is immersed in a viscous incompressible fluid. For FSI simulations, 

we employ the immersed boundary framework using a regular Eulerian computational grid for the fluid 

mechanics together with a Lagrangian representation of the immersed boundary. For the immersed fi- 

bre/membrane FSI problems, although the order of accuracy of the present scheme is generally similar 

to FDM approaches reported in the literature, the present approach is nonetheless more accurate than 

FDM approaches at comparable grid spacings. The numerical results obtained by the present scheme are 

highly accurate or in good agreement with those reported in earlier studies of the same problems. 

© 2016 Elsevier Ltd. All rights reserved. 

1. Introduction 

Although many scientific and engineering problems involve 

fluid structure interaction (FSI), thorough study of such problems 

remains a challenge due to their strong nonlinearity and multidis- 

ciplinary requirements [1–3] . For most FSI problems, closed form 

analytic methods to the model equations are often not available, 

while laboratory experiments are not practical due to limited re- 

sources. Therefore, to investigate the fundamental physics involved 

in the complicated interaction between fluids and solids, one has 

to rely on numerical methods [4] . 

In this study, we are interested in the interaction of a vis- 

cous incompressible fluid with an immersed elastic membrane. 

The immersed boundary method (IBM), originally developed by 

Peskin [5] , is designed to solve this kind of problem. The IBM is 

a mixed Eulerian-Lagrangian scheme in which the fluid dynamics 

based on the Navier-Stokes (N-S) equations are described in Eu- 

lerian form, and the elasticity of the structure is described in La- 

grangian form. The IBM considers the structure as an immersed 

boundary which can be represented by a singular force in the 

N-S equations rather than a real body. It avoids grid-conforming 
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difficulties associated with the moving boundary faced by conven- 

tional body-fitted methods. The fluid computation is done on a 

fixed, uniform computational lattice and the representation of the 

immersed boundary is independent of this lattice. The immersed 

boundary exerts a singular force on the nearby lattice points of 

the fluid with the help of a computational model of the Dirac δ- 

function. At the same time, the representative material points of 

the immersed boundary move at the local fluid velocity, which 

is obtained by interpolation from the nearby lattice points of the 

fluid. The same δ-function weights are used in the interpolation 

step as in the application of the boundary forces on the fluid. 

Computer simulations using the IBM such as blood flow in the 

heart [5,6] , insect flight [7] , aquatic animal locomotion [8] , bio-film 

processing [9] , and flow past a pick-up truck [10] have exhibited 

the great potential of the IBM in FSI applications. Reviews on im- 

mersed methods can be found in [11,12] . 

High-order approximation schemes have the ability to produce 

highly accurate solutions to incompressible viscous flow problems. 

With these schemes, a high level of accuracy can be achieved us- 

ing a relatively coarse discretisation. Many types of high-order ap- 

proximation methods have been reported in the literature. Botella 

and Peyret [13] developed a Chebyshev collocation method for the 

lid-driven cavity flow. Various types of high-order compact finite 

difference algorithms (HOC) were proposed [14–16] . On the other 
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Fig. 1. Compact 3-point 1D-IRBF stencil for interior nodes. 

hand, radial basis function networks (RBF) have emerged as a pow- 

erful approximation tool [17–19] . Different schemes of integrated 

RBF approximation (here referred to as IRBF) were developed in 

the literature [20–23] . In [24] , the authors developed a high-order 

fully coupled scheme based on compact IRBF approximations for 

viscous flow problems, where nodal first- and second-derivative 

values are included in the stencil approximation and the starting 

points in the integration process are second-order derivatives. In 

their work, the N-S governing equations are taken in the primitive 

form where the velocity and pressure fields are solved in a direct 

fully coupled approach. With relatively coarse meshes, the compact 

IRBF produces very accurate solutions to many fluid flow problems 

in comparison with some other methods such as the standard cen- 

tral finite different method (FDM) and HOC. Recently, Tien et al. 

[25] proposed a combined compact IRBF approximation scheme, 

where nodal first- and second-derivative values are also included 

in the stencil approximation, but the starting points are fourth- 

order derivatives. The fourth-order IRBF approach allows a more 

straightforward incorporation of nodal values of first- and second- 

order derivatives, and yields better accuracy over previous IRBF ap- 

proximation schemes. 

In this paper, we will incorporate the high-order combined 

compact IRBF approximation introduced in [25] into the fully cou- 

pled N-S approach reported in [24] . The new high-order fluid 

solver is verified through various problems such as heat, Burgers, 

convection-diffusion equations, Taylor-Green vortex and lid driven 

cavity flows. It will show that highly accurate results are obtained 

with the present approach. Then, we embed the fluid solver in 

the IBM procedure outlined in [26,27] to simulate FSI problems in 

which a stretched elastic fibre/membrane relaxes in a viscous fluid. 

Comparisons between the present scheme and some others, where 

appropriate, are presented; and, numerical studies of the grid con- 

vergence and order of accuracy are also included. 

The remainder of this paper is organised as follows: 

Sections 2 first reviews the spatial discretisation using the 

combined compact IRBF. Following this, Section 3 briefly describes 

the fully coupled approach for N-S equations. Section 4 sum- 

marises the mathematical formulation of the IBM. In Section 5 , 

various numerical examples are presented and the present results 

are compared with some benchmark solutions, where appropriate. 

Finally, concluding remarks are given in Section 6 . 

2. Review of combined compact IRBF scheme 

Consider a two-dimensional domain �, which is represented by 

a uniform Cartesian grid. The nodes are indexed in the x -direction 

by the subscript i ( i ∈ {1, 2, ..., n x }) and in the y -direction by 

j ( j ∈ {1, 2, ..., n y }). For rectangular domains, let N be the total 

number of nodes ( N = n x × n y ) and N ip be the number of interior 

nodes 
(
N ip = (n x − 2) × (n y − 2) 

)
. At an interior grid point x i, j = 

(x (i, j) , y (i, j) ) 
T where i ∈ { 2 , 3 , ..., n x − 1 } and j ∈ { 2 , 3 , ..., n y − 1 } , 

the associated stencils to be considered here are two local stencils: 

{ x (i −1 , j) , x (i, j) , x (i +1 , j) } in the x -direction and { y (i, j−1) , y (i, j) , y (i, j+1) } 
in the y -direction. Hereafter, for brevity, η denotes either x or y in 

a generic local stencil { η1 , η2 , η3 }, where η1 < η2 < η3 , as illus- 

trated in Fig. 1 . 

The integral process of the present combined compact IRBF 

starts with the decomposition of fourth-order derivatives of a 

variable, u , into RBFs; 

d 4 u (η) 

dη4 
= 

m ∑ 

i =1 

w i G i (η) . (1) 

Approximate representations for the third- to first-order deriva- 

tives and the functions itself are then obtained through the inte- 

gration processes; 

d 3 u (η) 

dη3 
= 

m ∑ 

i =1 

w i I 1 i (η) + c 1 , (2) 

d 2 u (η) 

dη2 
= 

m ∑ 

i =1 

w i I 2 i (η) + c 1 η + c 2 , (3) 

du (η) 

dη
= 

m ∑ 

i =1 

w i I 3 i (η) + 

1 

2 

c 1 η
2 + c 2 η + c 3 , (4) 

u (η) = 

m ∑ 

i =1 

w i I 4 i (η) + 

1 

6 

c 1 η
3 + 

1 

2 

c 2 η
2 + c 3 η + c 4 , (5) 

where I 1 i (η) = 

∫ 
G i (η) dη; I 2 i (η) = 

∫ 
I 1 i (η) dη; I 3 i (η) = 

∫ 
I 2 i (η) dη; 

I 4 i (η) = 

∫ 
I 3 i (η) dη; and, c 1 , c 2 , c 3 , and c 4 are the constants of in- 

tegration. The analytic form of the IRBFs up to eighth-order can 

be found in [28] . It is noted that, for the solution of second-order 

PDEs, only ( 3 - 5 ) are needed. 

2.1. First-order derivative approximations 

For the combined compact approximation of the first-order 

derivatives at interior nodes, extra information is chosen as not 

only { du 1 
dη

; du 3 
dη

} but also { d 2 u 1 
dη2 ; d 2 u 3 

dη2 } . We construct the conversion 

system over a 3-point stencil as follows. ⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

u 1 

u 2 

u 3 

du 1 

dη
du 3 

dη
d 2 u 1 

dη2 

d 2 u 3 

dη2 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

= 

[ 

I 4 
I 3 
I 2 

] 

︸ ︷︷ ︸ 
C 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

w 1 

w 2 

w 3 

c 1 
c 2 
c 3 
c 4 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, (6) 

where 
du i 
dη

= 

du 
dη

(ηi ) with i ∈ {1, 2, 3}; C is the conversion matrix; 

and, I 2 , I 3 , and I 4 are defined as 

I 2 = 

[
I 2 1 (η1 ) I 2 2 (η1 ) I 2 3 (η1 ) η1 1 0 0 

I 2 1 (η3 ) I 2 2 (η3 ) I 2 3 (η3 ) η3 1 0 0 

]
. (7) 

I 3 = 

⎡ 

⎣ 

I 3 1 (η1 ) I 3 2 (η1 ) I 3 3 (η1 ) 
1 

2 

η2 
1 η1 1 0 

I 3 1 (η3 ) I 3 2 (η3 ) I 3 3 (η3 ) 
1 

2 

η2 
3 η3 1 0 

⎤ 

⎦ . (8) 

I 4 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

I 4 1 (η1 ) I 4 2 (η1 ) I 4 3 (η1 ) 
1 

6 

η3 
1 

1 

2 

η2 
1 η1 1 

I 4 1 (η2 ) I 4 2 (η2 ) I 4 3 (η2 ) 
1 

6 

η3 
2 

1 

2 

η2 
2 η2 1 

I 4 1 (η3 ) I 4 2 (η3 ) I 4 3 (η3 ) 
1 

6 

η3 
3 

1 

2 

η2 
3 η3 1 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (9) 
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