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a b s t r a c t

A new projection method based on radial basis functions (RBFs) is presented for discretizing the incom-

pressible unsteady Stokes equations in irregular geometries. The novelty of the method comes from the

application of a new technique for computing the Leray–Helmholtz projection of a vector field using

generalized interpolation with divergence-free and curl-free RBFs. Unlike traditional projection methods,

this new method enables matching both tangential and normal components of divergence-free vector

fields on the domain boundary. This allows incompressibility of the velocity field to be enforced without

any time-splitting or pressure boundary conditions. Spatial derivatives are approximated using colloca-

tion with global RBFs so that the method only requires samples of the field at (possibly scattered) nodes

over the domain. Numerical results are presented demonstrating high-order convergence in both space

(between 5th and 6th orders) and time (up to 4th order) for some model problems in two dimensional

irregular geometries.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Radial basis functions (RBFs) are increasingly used as the build-

ing blocks of methods for the numerical solution of partial differ-

ential equations (PDEs), primarily due to their ability to discretize

differential operators on arbitrary geometries using scattered node

layouts. The potential for spectral accuracy of global RBFs on

smooth problems further adds to their appeal. These methods have

been used to solve PDEs on planar regions [5,12,22,23,32], spheri-

cal regions [7,8,19,37], and general surfaces [17,31].

In this work, we present a novel high-order RBF collocation

method for the numerical solution of the unsteady (or time-

dependent) incompressible Stokes equations on some (irregular)

2D domain �. These equations are obtained in the zero Reynolds

number limit of the incompressible Navier–Stokes equations and

are given by

∂u

∂t
= − 1

ρ
∇p + ν�u + 1

ρ
f , ∇ · u = 0, (1)

where u = [u v]T is the velocity field, p is the pressure, f is

some forcing term, ρ is the (constant) fluid density, and ν is the
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coefficient of kinematic viscosity. We consider no-slip conditions

on the boundary of �, denoted by ∂�,

u(x, t) = g(x, t), x ∈ ∂�, (2)

with the restriction that u · n = g · n = 0, where n is the respective

outward normal unit vector on ∂�.

One of the dominant approaches to numerically solving the

unsteady Stokes equations (and by extension, the Navier–Stokes

equations) is to use so-called fractional-step or projection meth-

ods, which were first introduced independently by Chorin [4] and

Temam [34] and have advanced to more modern exact and approx-

imate projection methods based on pressure Poisson equations; for

example, see [3,25,26,39]. Broadly speaking, these methods employ

operator splitting, and use the pressure to project an intermediate

velocity field to the space of incompressible or divergence-free ve-

locity fields. Such methods are more efficient than methods that

solve the saddle-point-like systems that arise from the discretiza-

tion of (1) (for more, see [2]). However, they typically require

specialized grids, and the careful selection of pressure and in-

termediate velocity boundary conditions to match the actual

boundary conditions on the velocity field; indeed, these methods

typically only match the normal components, and attempt to

match tangential components through time extrapolation [3]. As

a result of operator splitting, it is difficult (and in many cases im-

possible) to attain high orders of accuracy for the velocity field in
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time. In addition, errors in computing the pressure may propagate

to the velocity field, since the pressure is often used to project the

intermediate velocity field. For an overview of projection methods

for incompressible flows, see [20].

The RBF method we develop for the unsteady Stokes equations

also employs a projection-based approach, but avoids the issues

detailed above. This is achieved by developing a numerical approx-

imation to the projection operator that can be applied to (1) in

such a way as to avoid any errors from operator splitting. The

method relies on the following alternative form of (1) originally

proposed by Leray [9,24]:

∂u

∂t
= �

(
ν�u + 1

ρ
f

)
, (3)

where the operator � is the so-called Leray–Helmholtz (or sim-

ply Leray) projector and has the property that for a vector field w

on a connected domain �, �(w) = v where ∇ · v = 0 and v · n = 0.

The existence of this operator follows from the Helmholtz–Hodge

decomposition theorem. Eq. (3) is simply a forced diffusion-type

equation for u and is obtained by applying � to the first equation

in (1) and using the fact that �(∇p) = 0. Using the orthogonal

complement of �, which we denote as �⊥, the following auxiliary

equation to (3) for the gradient of the pressure can be obtained:

1

ρ
∇p = �⊥

(
ν�u + 1

ρ
f

)
. (4)

This allows the pressure to be recovered as an instantaneous

functional of the velocity field. Our goal is to construct a dis-

crete approximation to � and solve (3) using collocation and the

method-of-lines. We will use this to recover the pressure as in (4).

To discretize the Leray projector, we adopt the recent method

from [18] for computing the Helmholtz–Hodge decomposition of a

vector field based on generalized RBF interpolation with matrix-

valued kernels. This method provides a well-posed way to con-

struct a discrete Leray projector over a set of scattered nodes X in

some domain �, with the exact normal boundary conditions en-

forced at points along the domain boundary. It can then be ap-

plied to any vector field sampled at X to recover an analytically

divergence-free field everywhere on interior and boundary of �.

We modify the technique of [18] here so that � also incorporates

tangential boundary conditions, unlike both the traditional Leray

projector and the implicit Leray projection performed by meth-

ods that use the pressure Poisson equation. An approximation to

�⊥ can also be obtained trivially from this technique, and we use

that to recover the pressure p, but without solving a differential

equation for p . We combine the discrete Leray projection with

a global RBF collocation method for approximating the Laplacian

in (3) to get a semi-discrete approximation, which we then inte-

grate in time with a high-order BDF scheme. The method avoids

any errors from operator splitting, does not require the use of spe-

cialized grids or meshes, and can be used with scattered nodes.

We demonstrate that this new methodology allows for high order

accuracy in space and arbitrary orders of convergence in time on

irregular domains.

Similar approaches to the one we propose have been adopted

with divergence-free RBFs [36], divergence-free wavelets [21], and

divergence-free polynomials in the context of finite elements [38].

The first approach uses a similar matrix-valued kernel, but enlarges

it to account for the pressure coupling, which increases the com-

putational cost. It also is presently restricted to time-independent

problems. The wavelet approach is similar to ours in that it em-

ploys the (standard) Leray projection, but it is restricted to far

more regular domains and nodes (rectangular boxes with tensor

product nodes). The finite element approach differs from ours in

that a weak formulation with divergence-free test functions is em-

ployed to remove the pressure. This method also requires a mesh,

and boundary conditions are only enforced weakly.

The remainder of the paper is organized as follows. In Section 2,

RBF collocation for approximating the Laplacian is briefly reviewed.

In Section 3, generalized interpolation of vector-valued functions

with matrix-valued RBFs is presented and applied to the construc-

tion of a discrete Leray projector. Equipped with spatial discretiza-

tions of the Laplacian and the Leray projector, we then discuss

the full space-time discretization of the incompressible unsteady

Stokes equations in Section 4. Eigenvalue stability of the method is

investigated in Section 5. Numerical results demonstrating the spa-

tial and temporal accuracy of our method are given in Section 6 us-

ing two problems involving time-dependent boundary conditions:

rotational flow on a rotating disk, and a flow on a rectangular do-

main containing a spinning disk in its interior. This is followed by a

summary of the method and a discussion of future enhancements

in Section 7.

2. RBF collocation method for the Laplacian

Let � ⊆ R
d, and φ : � × � → R be a kernel with the property

φ(x, y) := φ(‖x − y‖) for x, y ∈ �, where ‖ · ‖ is the standard Eu-

clidean norm in R
d . We refer to kernels with this property as radial

kernels or radial functions. Given a set of nodes X = {xk}N
k=1

⊂ �

and a continuous target function f : � → R sampled at the nodes

in X, the standard RBF interpolant to the data has the form

s f (x) =
N∑

k=1

ckφ(‖x − xk‖). (5)

The expansion coefficients {ck}N
k=1

are determined by enforcing

s|X = f |X . This can be expressed as the following linear system:⎡
⎢⎢⎣

φ(r1,1) φ(r1,2) . . . φ(r1,N)
φ(r2,1) φ(r2,2) . . . φ(r2,N)

...
...

. . .
...

φ(rN,1) φ(rN,2) . . . φ(rN,N)

⎤
⎥⎥⎦

︸ ︷︷ ︸
AX

⎡
⎢⎢⎣

c1

c2

...
cN

⎤
⎥⎥⎦

︸ ︷︷ ︸
c f

=

⎡
⎢⎢⎣

f1

f2

...
fN

⎤
⎥⎥⎦

︸ ︷︷ ︸
fX

, (6)

where ri, j = ||xi − x j||. If φ is, for example, a positive-definite radial

kernel on R
d, and all nodes in X are distinct, then the matrix AX

above is guaranteed to be positive definite, hence (5) is well-posed.

Examples of various choices for φ, including relaxed conditions to

guarantee the well-posedness of (5) can be found in [5, Chap. 3–

12]). The convergence of these RBF interpolants to the target func-

tion as the number of samples increases is, in general, determined

by the rate of decay of the Fourier transform of φ. If the rate of

decay is algebraic, then one can expect algebraic convergence for

a sufficiently smooth function. If instead the Fourier transform de-

cays exponentially, then one can expect exponential (or spectral)

convergence for a large class of infinitely smooth functions.

The RBF interpolant (5) can be exploited to construct discrete

approximations to linear differential operators (differentiation ma-

trices) in the same fashion as standard Chebyshev or Fourier col-

location methods [12, Chap. 3–4]. However, the RBF method is not

restricted to special node sets. Let L be a linear differential opera-

tor of interest and suppose we wish to approximate L f using the

RBF interpolant (5) of f sampled at X. Applying L to (5) and evalu-

ating at the points in X gives the following matrix equation:⎡
⎢⎢⎣

(Ls f )1

(Ls f )2

...
(Ls f )N

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣
Lφ(r1,1) Lφ(r1,2) . . . Lφ(r1,N)
Lφ(r2,1) Lφ(r2,2) . . . Lφ(r2,N)

...
...

. . .
...

Lφ(rN,1) Lφ(rN,2) . . . Lφ(rN,N)

⎤
⎥⎥⎦

︸ ︷︷ ︸
AL

X

⎡
⎢⎢⎣

c1

c2

...
cN

⎤
⎥⎥⎦

︸ ︷︷ ︸
c f

, (7)
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