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a b s t r a c t

The paper presents a new cell-centered Lagrangian method for two-dimensional compressible flows. The

main feature of the method is that the velocity and pressure at the cell vertex are computed using the

local Galerkin evolution scheme for solving the linearized flow equations in terms of the bicharacteris-

tic theory, and then the velocity and pressure are used to update the grid coordinates and evaluate the

numerical flux across the cell interface. The local Galerkin evolution operator in terms of the Lagrangian

description is developed, which gives the solutions evolving for an infinite small time interval from the

initial conditions and still maintaining the genuine multidimensional nature of hyperbolic system. Mean-

while, the present method can preserve geometry compatibility. Several numerical results demonstrate

that the method possesses of good property of convergence, symmetry and robustness, and has the ca-

pability to handle the multimaterial flows.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In multimaterial flow simulation, a Lagrangian method embeds

a computational mesh in material and solves for the positions of

grid points at discrete time intervals. Since the mesh is embedded

in material, the motion of the material as well as the multimate-

rial interfaces is inferred from the motion of the mesh. Therefore,

the Lagrangian method can accurately compute the motion of the

material interfaces. Its main difficulty lies in the determination

of the velocity at the cell vertex, especially in multidimensional

cases. The traditional way to overcome this difficulty is to use a

staggered-grid discretization, in which the velocity is defined at

vertex of cell and the other variables, such as density, pressure

and specific internal energy, are defined at the center of cell

[1]. Besides inconsistency of locations in defining the physical

variables, the staggered-grid scheme has asynchronous time ad-

vancement between the momentum equation and the mass and

internal energy equations. In its initial version, this scheme cannot

preserve the conservation of the total energy, and maybe produce

non-physical oscillations induced by the artificial viscosity in

the vicinity of shock waves. In the past decade, many studies

have been devoted in solving these problems and in improving
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the conservation, accuracy, monotonicity and robustness of the

staggered-grid Lagrangian methods [2-5]. With these improve-

ments, the staggered-grid Lagrangian scheme gradually becomes

an accurate and robust method.

A highly promising alternative to the staggered-grid scheme is

to use a conservative cell-centered discretization, in which the pri-

mary variables including the density, momentum (velocity) and to-

tal energy are defined at the center of a cell. The cell-centered

scheme is constructed by integrating directly the system of conser-

vation laws on each moving cell with finite volume discretization.

Therefore, it preserves the conservation of the momentum and to-

tal energy. Besides the consistency of locations in defining physical

variables, the cell-centered scheme has synchronous time advance-

ment among the flow governing equations. Moreover, under the

framework of finite volume discretization, the artificial viscosity

and hourglass viscosity are not needed when the Riemann solver

is used. The idea of cell-centered scheme was firstly introduced by

Godunov [6] in one-dimensional gas dynamics and then extended

to multidimensional flows. In multidimensional cases, there are

three typical approaches to determine the vertex velocity of a cell.

The first approach is a pure mathematical arithmetic, such as the

one proposed by Dukowicz [7], in which an exact or approximate

one-dimensional Riemann problem in the direction normal to the

cell interface is solved, and then the vertex velocity is computed by

the least squares procedure that minimizes the difference between

the normal velocity predicted by the Riemann solver and the nor-

mal projection of the vertex velocity. The main drawbacks of this
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approach are the usual production of an artificial mesh motion and

an inconsistent numerical flux across the cell interface with the

mesh motion. The second approach is a dimensional-splitting or

“grid-aligned” solver, such as the one developed by Cheng and Shu

[8], in which the left and right states of velocity across the cell in-

terface are split into normal and tangential component along the

cell interface, and then the tangential velocity of the vertex along

the cell interface is computed by the arithmetic average, and the

normal velocity is computed by a one-dimensional Riemann solver.

The main drawbacks of this approach are that the multidimen-

sional effect of flow is not taken into account and the numerical

flux still is not consistent with mesh motion. The third approach

is a nodal acoustic Riemann solver, such as the ones suggested by

Després and Mazeran [9] and Maire [10–16], in which the vertex

velocity is computed in a coherent manner in terms of the numer-

ical fluxes across the cell interface. On basis of theoretically anal-

ysis of the Lagrangian gas dynamics equations written in the fully

Lagrangian form, Després and Mazeran derived a conservative and

entropy consistent two-dimensional Lagrangian scheme of the fi-

nite volume type. However, even in the case of one-dimensional

flows solved by two-dimensional meshes, this scheme computed

a vertex velocity depending on the cell aspect ratio. Maire stud-

ied this issue and developed an improved scheme that retains the

good features of Després and Mazeran scheme but resolves the as-

pect ratio problem. In the scheme of Maire, the vertex velocity and

numerical flux across the cell interface are not computed indepen-

dently as usual but in a consistent manner with an original solver

located at the node. The main feature of this scheme is the intro-

duction of four pressures on every interface, two for every vertex

on every side of the interface, and the four pressures are utilized

to compute the velocity and pressure at the vertex by means of a

linear system derived from the local momentum and total energy

conservation and the local entropy inequality. The numerical re-

sults show that, in the case of a one-dimensional flow solved on

two-dimensional meshes, or for flows in a cylindrical geometry,

this scheme recovers the classical Godunov approximate Riemann

solver. Subsequently, Maire extends his scheme to higher order ac-

curacy and unstructured grids cases. Maire’s scheme has an im-

pressive simulating capability, but still has some very prominent

drawbacks. The introduction of four pressures on every interface

leads to a nonequilibrium of numerical fluxes on two sides of a

cell interface, and the sufficient conditions satisfied by each vertex

for the local momentum and total energy conservation and the lo-

cal entropy inequality are excessively strict, moreover, the approx-

imate acoustic solver and a corresponding weighted least squares

procedure do not accommodate extensive flow physics.

Apparently, it is highly preferable to construct the Riemann

solver at the cell vertex directly from the characteristic prop-

erty of multidimensional compressible flow equations. To design

this “genuinely multidimensional” upwind technique, the evolution

Galerkin scheme [17] may be adopted, in which the exact inte-

gral equations for the linear or linearized hyperbolic system were

derived from the general theory of bicharacteristics in terms of

the primitive physical variables. These integral equations can be

solved approximately to obtain the solution at the cell vertex and

to evaluate the numerical fluxes across the cell interface. This ver-

tex solver from the bicharacteristic theory essentially is a multidi-

mensional Riemann solver or a generalization of the original idea

of Godunov to multidimensional hyperbolic conservation laws. The

idea has been studied extensively from theoretical as well as nu-

merical point of view and applied to various scientific and engi-

neering problems involving the compressible flow equations in the

Eulerian formulation [18–24]. Traditionally, the evolution Galerkin

operator gives the evolution of the approximate solution within a

certain time interval. In order to simplify the solution procedure

and apply it in the efficient semi-discrete finite volume scheme,

the local evolution Galerkin operator has been proposed by Sun

and Ren [23], in which the solutions that are evolved for an in-

finitely small time interval are derived and are used as an mul-

tidimensional Riemann solver of the semi-discrete finite volume

scheme. The semi-discrete finite volume scheme decouples the

temporal discretization and the spatial discretization while main-

taining the genuine multidimensional nature of the original evolu-

tion Galerkin scheme.

In the present paper, the local evolution Galerkin scheme is

extended to the two-dimensional compressible flows in the La-

grangian formulation. This new cell-centered Lagrangian method

is proposed under the finite volume framework, in which the ve-

locity and pressure on the vertex of a cell are computed on the

basis of the local Galerkin evolution operator for solving the lin-

earized compressible flow equations in terms of the primitive vari-

ables, and then the velocity and pressure are used to update the

grid coordinates and evaluate the numerical flux across the cell in-

terface.

The main difference between the new method in this paper and

the method in [10] is on the construction of the nodal solver. In

[10], the nodal solver is derived from the global conservation of

momentum and a local entropy inequality, which is equivalent to a

weighted least squares procedure. In this paper, the nodal solver is

constructed using the local Galerkin evolution scheme for solving

the linearized flow equations in terms of the bicharacteristic the-

ory, which is essentially a multidimensional Riemann solver taking

“multidimension effect” into account in a nature way. Furthermore,

in the method of [10], four pressures are defined on each edge, two

for each node on each side of the edge, where a “grid-aligned” Rie-

mann solver (acoustic approximate solver) is adopted and the nu-

merical flux across interface is nonequilibrium. While in the nodal

solver of this paper, the pressure is defined on each node, so a

really nodal solver is applied and the numerical flux across inter-

face can be equilibrium. Compared to the method in [10], the new

method in this paper has smaller absolute error and numerical dis-

sipation.

The paper is organized as follows. In Section 2, we give the

cell-centered finite volume method for compressible flows equa-

tions in the Lagrangian formulation. In Section 3, the vertex solver

to compute velocity and pressure at vertex of cell by local evo-

lution Galerkin operator is derived. In Section 4 the global de-

scription of the present algorithm is shown. In Section 5 several

numerical tests are shown to demonstrate the convergence, sym-

metry, accuracy and robustness of this new scheme, and to vali-

date its capability to unstructured grids and multi material flows.

Some main conclusions are presented in Section 6.

2. Numerical methods

2.1. Governing equations of compressible flow

The governing equations of compressible flow in Lagrangian for-

mulation are follows:

d

dt

∫
�(t)

d� =
∫
∂ �(t)

u · dl (1.1)

d

dt

∫
�(t)

ρ d� = 0 (1.2)

d

dt

∫
�(t)

ρ u d� = −
∫
∂ �(t)

p dl (1.3)

d

dt

∫
�(t)

ρ E d� = −
∫
∂ �(t)

p u · dl (1.4)

where ρ is density, u and v are component velocity, p is pressure,

E is specific total energy, E = e + (u2 + v2)/2, e is specific internal
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