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a b s t r a c t

We introduce a new second-order central-upwind scheme for shallow water equations on the unstructured

quadrilateral grids. We propose a new technique for bottom topography approximation over quadrilateral

cells as well as an efficient water surface correction procedure which guarantee the positivity of the computed

fluid depth. We also design a new quadrature for the discretization of the source term, using which the new

scheme exactly preserves “lake at rest” steady states. We demonstrate these features of the new scheme as

well as its high resolution and robustness and its potential advantages over the triangular central-upwind

scheme in a number of numerical examples.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we consider the two-dimensional (2D) shallow water

equations (SWEs):⎧⎪⎨⎪⎩
ht + (hu)x + (hv)y = 0,

(hu)t +
(
hu2 + 1

2
gh2

)
x
+ (huv)y = −ghBx,

(hv)t + (huv)x +
(
hv2 + 1

2
gh2

)
y

= −ghBy.

(1)

Here, h(x, y, t) is the water depth, u(x, y, t) and v(x, y, t) are the x−
and y− velocities, respectively, B(x, y) is bottom topography and g is

the gravitational constant. 2D SWEs are commonly used to simulate

a wide range of problems in water resources engineering, modeling

oceans, rivers and coastal areas, etc.

The system (1) admits several steady-state solutions. One of the

practically most important steady states is a so-called "lake at rest"

state satisfying,

u ≡ v ≡ 0, h + B = const. (2)

A good numerical method for the SWEs (1) should be well-

balanced, that is, it should be capable to exactly preserve the "lake

at rest" steady states (2). It should also preserve positivity of the wa-

ter depth h.
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Many numerical methods for SWEs were developed in past

decades. We refer the reader, for example, to finite difference [1–4],

finite element [4–9] and finite volume [4,10–15] methods. In this pa-

per we focus on the finite volume method which are based on the

integral form of (1) and thus are naturally designed to conserve the

mass.

Central upwind scheme is one of the finite volume methods

that is both well-balanced and positivity preserving. Central-upwind

schemes are Riemann-problem-solver-free Godunov-type methods

that were originally introduced in [16] for the general multidimen-

sional systems of hyperbolic conservation law and further developed

in [17–20]. In [21,22], the central- upwind scheme for the SWEs were

developed in the one-dimensional (1D) and 2D cases using Cartesian

grids. In [23], the central-upwind schemes were extended to unstruc-

tured triangular meshes, and in [24], they were also generalized for

polygon cell-vertex meshes.

The main goal of this paper is to develop a second-order well-

balanced positivity preserving central-upwind scheme for (1) on

unstructured quadrilateral grids. Such grids have been widely used

in finite volume methods for various applications, in particular,

for numerically solving incompressible Navier–Stokes, diffusion

equations, semilinear elliptic and elliptic systems, see, e.g., [25–28]

and references therein. In particular, quadrilateral grids have been

used to develop finite volume methods for the 2D SWEs, see, e.g.,

[29–34]. Unstructured quadrilateral grids are popular since they

allow one to relatively easily implement the local and adaptive mesh

refinement techniques [35,36], increase the formal order of spatial

accuracy of the scheme, and discretize the second- and higher-order

terms [30,37]. Comparing to the triangular grids, one of the main
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advantages of the quadrilateral ones is that quadrilateral cells have

more neighboring cells and thus the quadrilateral time evolution

procedure is typically more accurate.

The proposed quadrilateral central-upwind scheme is an exten-

sion of the triangular central -upwind scheme from [23]. However,

some of the ingredients of the triangular scheme cannot be directly

carried to the quadrilateral case. For example, one cannot obtain a

continuous piecewise linear approximation of the bottom topogra-

phy. Instead, we introduce a new bottom topography approximation.

In each quadrilateral cell the bottom topography function B is re-

placed with four continuous linear pieces, each of which connects

the values of B at two of the neighboring cell vertices with the ap-

proximation value of B at the geometric center of the cell. Another

novelty of our quadrilateral scheme is a new water surface recon-

struction correction technique, required to guarantee the positivity

of the water depth at the reconstruction step of the central-upwind

scheme. To this end, we first perform a piecewise linear reconstruc-

tion of the water surface and then, in the cells where some values of

the reconstructions fall below the corresponding values of the bot-

tom topography, we replace the linear piece with four continuously

matched linear pieces whose shape is similar to the bottom topogra-

phy approximant in this cell. As we prove in Theorem 1, this guaran-

tees the positivity of the water depth h. To ensure the well-balanced

property of the proposed scheme, we design a special quadrature for

the cell average of the geometric source term, which leads to a perfect

balance of the source and fluxes for the “lake at rest” state.

To the best of our knowledge, the designed central-upwind

scheme is among the first well-balanced positivity preserving

schemes on unstructured quadrilateral grids.

The paper is organized as follows. The proposed central-upwind

scheme is described in Section 2 and its well-balanced and positivity

preserving properties are proved in Sections 3 and 4. In Section 5,

the new scheme is tested on a number of numerical experiments

which demonstrate high accuracy robustness of the proposed scheme

and also emphasize its potential advantages over its triangular coun-

terpart. Finally, we finish the paper with concluding remarks in

Section 6.

2. Central-upwind cheme on unstructured quadrilateral grids

First, we introduce the water surface variable w = h + B and

rewrite the system (1) in the following equivalent form:

Ut + F (U, B)x + G(U, B)y = S(U, B), (3)

where

U = (w, hu, hv)
T
, (4)

F (U, B) =
(

hu,
(hu)

2

w − B
+ g

2
(w − B)

2
,
(hu)(hv)

w − B

)T

, (5)

G(U, B) =
(

hv,
(hu)(hv)

w − B
,

(hu)
2

w − B
+ g

2
(w − B)

2

)T

, (6)

S(U, B)=(0,−g(w − B)Bx,−g(w − B)By)
T
. (7)

Let the computational domain discretization � = ∪N
j=1

E j be cov-

ered by a quadrilateral grids with the cells Ej of size |Ej|. A typical cell

Ej together with its neighbours E jk, k = 1, 2, 3, 4 are outlined in Fig. 1.

We denote by �n jk := (cos(θ jk), sin(θ jk)) the outer unit normals

of the corresponding sides of Ej of length l jk, k = 1, 2, 3, 4. The coor-

dinates of the geometric center (center of mass) of the Ej are denoted

by (xj, yj) and M jk := (x jk, y jk), k = 1, 2, 3, 4 is the midpoint of the

k−th side of the quadrilateral Ej.

In the semi-discrete central-upwind scheme, the cell average of

the computed solutions, Ū (t)
j

≈ 1
E j

∫U
E j

(x, y, t)dxdy,are evolved in time

Fig. 1. An unstructured quadrilateral cell with its four neighboring cells.

by solving the following system of ODEs:

dŪj

dt
= − 1∣∣Ej

∣∣ 4∑
k=1

l jk cos
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jkF
(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk F
(
Uj

(
Mjk

)
, B

(
Mjk

))]
− 1∣∣Ej

∣∣ 4∑
k=1

l jk sin
(
θ jk

)
ain

jk
+ aout

jk

[
ain

jkG
(
Ujk

(
Mjk

)
, B

(
Mjk

))
+ aout

jk G
(
Uj

(
Mjk

)
, B

(
Mjk

))]
+ 1∣∣Ej

∣∣ 4∑
k=1

l jk

ain
jk

aout
jk

ain
jk

+ aout
jk

[
Ujk

(
Mjk

)
− Uj

(
Mjk

)]
+ S̄ j, (8)

which can be derived similarly to the derivation procedure proposed

for a triangular grids in [20,23]. Notice that all the indexed quantities

in (8) are functions of t, but from now on we omit this dependence

for the sake of brevity.

The values Uj(Mjk) and Ujk(Mjk) are the values at Mjk of the two

polynomial pieces reconstructed in cells Ejand Ejk, respectively. The

corresponding piecewise linear reconstruction is:

Ũj(x, y) = Ūj + (Ux) j

(
x − x j

)
+ (Uy) j

(
y − yj

)
. (9)

To minimize the oscillations, the slopes (Ux)j and (Uy)j are to

be computed using a nonlinear limiter. We propose the following

minmod-type limiter which will be applied in a component wise

manner. Consider the ith component of U, we first construct four lin-

ear interpolations L12
j

, L23
j

, L34
j

and L41
j

, each of which is obtained by

considering the three points at the geometric center of Ej and corre-

sponding two neighboring cells. For example, L12
j

is obtained by pass-

ing the plane through (x j, y j, Ū (i)
j

), (x j1, y j1, Ū (i)
j1

) and (x j2, y j2, Ū (i)
j2

).

Notice that all of the four obtained interpolants are conservative in

the cell Ej by construction. We then select the linear piece with the

smallest magnitude of the gradient, say Lkm
j

, and we set:(
(Ux)

(i)
j

, (Uy)
(i)
j

)
= ∇Lkm

j . (10)

In order to further minimize the reconstruction oscillations, the

reconstructed values calculated at the points M jk, k = 1, 2, 3, 4 are

checked. If the reconstructed value of U (i)
j

(M jk) is not between the

cell averages Ū (i)
j

and Ū (i)
jk

, we set(
(Ux)

(i)
j

, (Uy)
(i)
j

)
= 0. (11)
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