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a b s t r a c t

In this paper we consider the solution of the compressible Navier–Stokes equations for a class of laminar

airfoil flows. The principal objective of this paper is to demonstrate that members of this class of laminar flows

have steady-state solutions. These laminar airfoil flow cases are often used to evaluate accuracy, stability and

convergence of numerical solution algorithms for the Navier–Stokes equations. In recent years such flows

have also been used as test cases for high-order numerical schemes. While generally consistent steady-state

solutions have been obtained for these flows using higher order schemes, a number of results have been

published with various solutions, including unsteady ones. We demonstrate with two different numerical

methods and a range of meshes with a maximum density that exceeds 8 × 106 grid points that steady-state

solutions are obtained. Furthermore, numerical evidence is presented that even when solving the equations

with an unsteady algorithm, one obtains steady-state solutions.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the development and evaluation of numerical schemes it

is essential to have a comprehensive set of test problems. Such

problems can allow specific properties of the solution algorithm to

be validated. Furthermore, they can possibly delineate deficiencies

in the algorithm that must be overcome. These test cases should

provide either an analytic solution or a fully converged and resolved

numerical solution. While experimental data can often provide

confirmation for the validity of the computed solution, one should

not necessarily conclude that everything is working correctly for a

steady-state problem just because there is reasonable agreement

with the data according to some engineering criterion (such as a

small variation in the aerodynamic coefficients) when the residual

has only been reduced a few orders of magnitude (rather than

machine zero). An appropriate evaluation should involve a hierarchy

of test cases. For example, if we consider solving the Navier–Stokes

equations, the test cases should include laminar flows. Laminar flow

test cases have the distinct advantage that they eliminate the need

at sufficiently high Reynolds numbers to either resolve turbulence in

a flow field or to model the turbulence appropriately.

Some possible laminar flow test cases involving the NACA 0012

airfoil were considered by the first author of this paper in 1984. One

of these test cases (Mach number (M) of 0.5, angle of attack (α) of 0°,
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and Reynolds number (Re) equal to 5000) was introduced in the 1985

paper by Swanson and Turkel [1] to evaluate an algorithm for solv-

ing the compressible Navier–Stokes equations. This particular case

was chosen because it has a small amount of trailing edge separa-

tion (beginning at approximately the 81% chord location), and thus,

represented a good way to check the levels of dissipation being pro-

duced by the numerical scheme. For example, if the scheme is too

dissipative, the effective Reynolds number is reduced, and the sepa-

ration point moves downstream. Since that time, this case has been

considered in numerous evaluations of schemes, such as Refs. [1–7].

It has also been used in a study of vortex–airfoil interaction by Svärd

et al. [8]. In addition, this case and another one of the original cases

(α = 3◦) have also been used by Venditti [9] in evaluating a grid adap-

tive scheme for functional outputs of flow simulations.

In recent years some additional laminar flow cases for the NACA

0012 airfoil have also been considered. The flow conditions are the

same as for the original cases of Swanson except α = 1◦ or α = 2◦.

These cases, as well as the original cases, have been considered in the

European project ADIGMA to develop adaptive high-order variational

methods for aerospace applications [10]. Due to the strong interest in

these laminar flow cases, there is a need to have documentation of

their solutions.

Some recent efforts to compute members of this class of flow

problems have produced solutions that are inconsistent with the

rather large number of previous solutions (computed with a wide

range of numerical methods), including those already cited in this

paper. For example, Abgrall and De Santis [11] show unexpected so-

lutions for the α = 0◦ case, which should have a symmetric solution
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based on previous results, using both second-order and third-order

discretizations. One possibility for such results is the presence of an

asymmetry in their solution algorithm. Another example concerns

the unsteady solution for the α = 2◦ case presented in the ADIGMA

Project [10] paper by Taube et al. (starting on page 427). Even though

the computational method included adaptation, the calculation was

performed on a rather coarse mesh (815 cells) and the adaptation

seems to have been focused in the wake. Thus, there could have been

insufficient resolution in the neighborhood of the separation point,

which can produce a result that appears to be an unsteady solution.

There is also the possibility that the solution algorithm is not suffi-

ciently strong, as measured by the level of implicitness. In this pa-

per we will show how a weak solution algorithm can produce what

appears to be an unsteady solution. Dolejší [12] has also obtained

an unsteady solution for this laminar flow case. A nonlinear system

of algebraic equations (from discontinuous Galerkin finite element

method) is solved with an inexact Newton-time method. An inner it-

erative method is required to solve a linear system at each time level.

Since the residual (algebraic error) of the iteration is not being re-

duced to approximately zero, there can be sufficient error to produce

an unsteady result. In any of these examples one cannot dismiss the

possible influence of boundary conditions. It is difficult to assess this

because descriptions of the discrete implementation of the boundary

conditions for the problems being considered are not given.

As a consequence of such examples, a primary objective of this

paper is to demonstrate that there are steady-state solutions, even on

high density meshes, to this class of problems. Two additional ob-

jectives of this paper are as follows. The first of these is to exam-

ine and document the behavior of a set of laminar flow problems,

which includes those just discussed, as well as a commonly consid-

ered lower Re case with a higher angle of attack. The second ad-

ditional objective is to compare two methods for solving the com-

pressible Navier–Stokes equations. One method [13,14] is based on

structured grids, and the other [15] is based on unstructured grids.

Both methods apply a finite-volume approach for spatial discretiza-

tion. The structured grid method uses a cell-centered formulation,

and the unstructured grid method uses a node-centered formulation.

Each method applies a matrix form for numerical dissipation. In ad-

dition, using the structured grid approach a Roe dissipation (which

is frequently used in numerical schemes) is also considered. When

comparing what we call structured and unstructured schemes it is

important to clarify the meaning of this terminology with respect to

contrasting the schemes. In the paper, the same set of structured grids

(i.e., quadrilateral elements) is used for both methods. Thus, the com-

parison of the schemes is based on the fact that there are differences

in their elements and implementation.

For all computations in the paper we solve the full Navier–

Stokes equations (i.e., all physical diffusion terms are retained). The

solvers for the two methods are comprised of a Runge–Kutta (RK)

scheme with an implicit preconditioner (herein also designated as

RK/Implicit scheme) to extend stability and allow a large Courant–

Friedrichs–Lewy (CFL) number. A multigrid scheme is employed for

convergence acceleration. In the comparison of the methods we con-

sider accuracy, stability, and convergence when computing solutions

of the laminar flow cases.

In the first section of the paper we present the governing flow

equations and the boundary conditions for the continuous problem

of flow past an airfoil. The next two sections describe and discuss

the structured and unstructured methods, including the discrete

boundary conditions, that are considered. After delineating the

specific differences in the two methods, we then present a set of

laminar flow results that compare the methods. Convergence his-

tories are shown for both steady-state and unsteady computations.

Comparisons are made between the results with the structured and

unstructured methods. The effects of mesh density on the solutions,

which contain between 8192 and about 8.39 × 106 cells, as well as

the surface pressure and skin-friction distributions for each laminar

flow case are presented and discussed. In all cases there is flow

separation, and both the separation location and downstream extent

of separation are compared. Overall flow details are also illustrated

with Mach and streamline plots. Such details provide a reference for

other investigators to compare against.

2. Governing equations

We consider the two-dimensional (2-D) Navier–Stokes equations

for compressible flow. Assuming a volume fixed in space and time,

the integral form of these equations can be written as∫ ∫
V

∂W

∂t
dV +

∫
S
F · ndS = 0, (2.1)

where W is the state vector of conservative variables, F is the flux

density tensor, and V, S, and n denote the volume, surface, and out-

ward facing normal of the control volume. One can split the flux den-

sity tensor into a convective contribution Fc and a viscous contribu-

tion Fv, which are given by

Fc =

⎡⎢⎣ ρq
ρuq + pex

ρvq + pey

ρHq

⎤⎥⎦, Fv =

⎡⎢⎣ 0
τ̄ · ex

τ̄ · ey

τ̄ · q − Q

⎤⎥⎦ (2.2)

where q is the velocity vector with Cartesian components (u, v), and

the unit vectors (ex, ey) are associated with the Cartesian coordinates

(x, y). The variables ρ , p, H represent density, pressure, and total spe-

cific enthalpy, respectively. The stress tensor τ̄ and the heat flux vec-

tor Q are given by

τ̄ =
[
τxx τxy

τyx τyy

]
, Q = k

[
∂T/∂x
∂T/∂y

]
(2.3)

with

τxx = λ

(
∂u

∂x
+ ∂v

∂y

)
+ 2μ

∂u

∂x
, τyy = λ

(
∂u

∂x
+ ∂v

∂y

)
+ 2μ

∂v
∂y

,

τxy = τyx = λ

(
∂u

∂y
+ ∂v

∂x

)
. (2.4)

Here, the symbol ∂ indicates partial differentiation, μ and λ are

the first and second coefficients of molecular viscosity, k denotes the

coefficient of thermal conductivity and T represents the tempera-

ture. By the Stokes hypothesis λ = −2/3μ, and μ is determined with

Sutherland’s viscosity law [16]. The thermal conductivity k is evalu-

ated with the constant Prandtl number assumption (i.e., the Prandtl

number Pr = 0.72).

In order to close the system given by Eq. (2.1) we use the equation

of state

p = ρRT (2.5)

where R is the specific gas constant.

2.1. Physical boundary conditions

In the continuum case we consider an external flow problem (i.e.,

flow past a given geometry) on an infinite domain � ⊂ R
2. Thus, we

need to define appropriate conditions at a wall boundary, which we

assume to be solid. Later, in the discrete case, we define a finite do-

main. It will then be necessary to define suitable inflow and outflow

boundary conditions.

For viscous flows, the non-penetration condition and the no-slip

condition are imposed,

q · n = 0, q · t = 0, (2.6a)
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