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a b s t r a c t

An efficient Bubnov–Galerkin finite element formulation is employed to solve the Navier–Stokes and conti-

nuity equations in three-dimensions for the case of surface-tension dominated film flow over substrate to-

pography, with the free-surface location obtained using the method of spines. The computational challenges

encountered are overcome by employing a direct parallel multi-frontal method in conjunction with memory-

efficient out-of-core storage of matrix co-factors. Comparison is drawn with complementary computational

and experimental results for low Reynolds number flow where they exist, and a range of new benchmark so-

lutions provided. These, in turn, are compared with corresponding solutions, for non-zero Reynolds number,

from a simplified model based on the long-wave approximation; the latter is shown to produce comparatively

acceptable results for the free-surface disturbance experienced, when the underpinning formal restrictions

on geometry and capillary number are not exceeded.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Processes involving the motion of liquid films on various sub-

strates are encountered across engineering, the sciences and tech-

nology, as reported in the recent comprehensive review by Craster

and Matar [1]. Examples from nature include the control of disease

in plants [2], and the redistribution of the liquid linings of respira-

tory systems [3]. They form an important component across several

industrial sectors, including the coating of papers and plastics in the

inkjet and photographic industries [4], heat exchanger and combus-

tion chamber design [5,6], and the application of anti-reflective coat-

ings [7]. They are also crucial in the cooling of electronic devices [8],

and in the manufacture of micro-scale electronic components, for ex-

ample in direct-write printing of circuits [9], where the precise de-

position of liquid films flowing over a distribution of functional topo-

graphic features (such as polymer light-emitting species on a screen)

is vital to ensuring acceptable product quality and performance.

The ever-increasing requirements for predictable product and

process properties has generated considerable interest in improving

the understanding of complex free-surface film flows over topog-

raphy. In many practically-important situations these requirements

translate into the need for reliable film thickness control. This is often

very difficult to achieve since free-surface disturbances induced by
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small-scale topography can result in film thickness non-uniformities

that persist over length scales several orders of magnitude greater

than the size of the topography itself [10]; other related experimen-

tal investigations of note supporting this include those of [8,11–14].

While well suited to studying the flow over isolated or periodically

repeating topographical features, the routine use of experiments in

the context of product and/or process design can prove prohibitive

both cost and time wise; hence the recourse, over the last decade or

so, to modelling approaches coupled with the efficient numerical so-

lution of the associated governing equations.

From a consideration of the three-dimensional nature of the flows

of interest and the disparity in length-scales encountered, the major-

ity of models to emerge are based on application of the long-wave

approximation which utilise the feature that the undisturbed asymp-

totic film thickness is small compared to the characteristic in-plane

length scale. The additional neglect of inertia enables such flows to

be represented either by a fourth order non-linear degenerate partial

differential equation for the film thickness, or by a coupled set of sec-

ond order equations for the film thickness and pressure [15], albeit

with formal restriction to surface tension-dominated flows having

small capillary number and for which the topography depth/height

is small compared to the film thickness. These, so-called, lubrication

equations have been used successfully to model thin film flows for

a range of problems including flows with evaporation [16], with sur-

factants [17], in the presence of an electric field [18], and for the case

of rivulet formation [19]. The influence of inertia can also be impor-

tant in terms of the magnitude of the free-surface disturbances that
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Fig. 1. Schematic diagram of gravity-driven film flow over a planar substrate containing a well-defined (a) hemispheroid and (b) trench topography; showing the coordinate system

adopted and surface geometry.

form [20], and beyond a critical Reynolds number from the point of

view of flow stability [21,22].

Despite their proven usefulness, the above models lack the gener-

ality associated with solving the governing Navier–Stokes and con-

tinuity equations themselves, which are not restricted in terms of

choice of film thickness, size of capillary number or topography

depth/height; another constraint lifted is that topographical features

with perfectly steep sides can be accommodated without the need

for smoothing. As might be construed, there are very few such film

flow solutions in the literature; the exceptions being boundary ele-

ment solutions obtained for Stokes flow, as reported by Pozrikidis,

and Thoroddsen [23] and Blyth, and Pozrikidis [24] for flow over a

small particle and a three-dimensional obstacle, respectively, and by

Baxter et al. [25,26] for flow past hemispheric obstacles with large

free-surface disturbances. Latterly [14], obtained solutions with in-

ertia present for film flow over a bi-periodically repeating substrate

using a Volume of Fluid algorithm to investigate pattern formation

and mixing; see also the work of [27] which addresses the capillary

flow problem of dynamic wetting as an interface forming process.

The remainder of the paper is organised as follows. The three-

dimensional flow problems considered are described in Section 2,

which includes the governing equation set, with the correspond-

ing finite element formulation and method of solution described in

Section 3. A series of results demonstrating the power and accuracy

of the solution strategy adopted and the flow phenomena that are

induced are provided in Section 4. Finally, conclusions are drawn in

Section 5.

2. Problem specification

The problems considered are for the case of steady-state, gravity-

driven, free-surface film flow down a planar substrate, inclined at an

angle θ ( �= 0) to the horizontal, and containing hemispheroid or trench

like topographical features, see Fig. 1, of height/depth S0, streamwise

diameter/length LT and spanwise diameter/width WT. The liquid is as-

sumed to be incompressible and to have constant density, ρ , dynamic

viscosity, μ, and surface tension, σ . The chosen Cartesian streamwise,

X, spanwise, Y, and normal, Z, components of the coordinate vector,

X = Xi + Y j + Zk, are as indicated; i, j, k are the corresponding ba-

sis vectors of the coordinate system. The solution domain is bounded

from below by the substrate, Z = S(X,Y), from above by the free sur-

face, Z = F(X,Y), upstream and downstream by the inflow, X = 0,

and outflow, X = LP, planes, respectively, and to the left and right by

the side planes at Y = 0 and Y = WP . The film thickness, H(X, Y), at

any point in the (X, Y) plane is given by H = F − S. The resulting lami-

nar flow is described by the Navier–Stokes and continuity equations,

namely:

ρU · ∇U = −∇P + ∇ · T + ρG, (1)

∇ · U = 0, (2)

where U = Ui + V j + Wk and P are the fluid velocity and gauge pres-

sure, respectively; T = μ(∇U + (∇U)T ) is the viscous stress tensor,

G = G0( sin θ i − cos θk) is the acceleration due to gravity where G0 is

the standard gravity constant.

Taking the reference length scale in all directions to be the asymp-

totic, or fully developed, film thickness, H0, and scaling the velocities

by the free-surface (maximum) velocity apropos the classic Nusselt

solution [28], U0 = ρG0H2
0 sin θ/2μ, and the pressure (stress tensor)

by P0 = μU0/H0, Eqs. (1) and (2) can be rewritten in non-dimensional

form as:

Reu · ∇u = −∇p + ∇ · τ + Stg, (3)

∇ · u = 0, (4)

where x = xi + y j + zk, u = ui + v j + wk, p, τ and g = G/G0 are the

non-dimensional coordinate, velocity, pressure, viscous stress tensor

and gravity component, respectively; Re = ρU0H0/μ is the Reynolds

number and St = ρG0H2
0
/μU0 = 2/ sin θ is the Stokes number.

The general problem definition is complete following the speci-

fication of appropriate no-slip, inflow/outflow, kinematic and free-

surface normal and tangential stress boundary conditions, see [29]:

u|z=s = 0, (5)

h|x=0 = 1, u|x=0,lp;y=0,wp
= z(2 − z)i, (6)

(n · u)|z= f = 0, (7)

−p|z= f + (τ|z= f · n) · n = κ

Ca
, (8)

(τ|z= f · n) · t = 0, (9)

where h, s, f together with lp and wp correspond to their dimen-

sional counterparts, n = ( − ∂ f
∂x

i − ∂ f
∂y

j + k) · [( ∂ f
∂x

)2 + ( ∂ f
∂y

)2 + 1]−1/2
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