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a b s t r a c t

The purpose of this paper is twofold. In the first part, the continuous adjoint formulation for field integral

objective functions used in steady-state, incompressible aerodynamic optimization is developed. The formu-

lation includes the full differentiation of the Spalart–Allmaras turbulence model based on wall functions. In

the second part, the developed adjoint method is used for optimizing the side mirror shape of a passenger

car, using volumetric B-Splines as the parameterization tool. Based on industrial experience, an appropriate,

though approximate, objective function to be minimized is expressed by the integral of the squared turbu-

lent viscosity over a volume residing next to the driver’s window. It should be stressed that if the commonly

used “frozen turbulence” assumption was made, by skipping the differentiation of the turbulence model, the

adjoint method would not have been able to provide any kind of sensitivity derivatives, since this objective

function depends exclusively upon the turbulent viscosity.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In aerodynamic shape optimization problems, the adjoint method

can be used to compute or approximate the gradient of the functions

of interest (either objective or constraint functions), with respect to

(w.r.t.) the design variables. To this end, the system of adjoint equa-

tions must be formulated by taking into consideration the governing

PDEs, i.e. the flow model equations and the corresponding boundary

conditions. Solving the adjoint system of equations has a computa-

tional cost comparable to that of solving the flow equations and is

independent of the number of design variables.

The adjoint equations can be formulated in either continuous or

discrete form. In the former, the adjoint PDEs and their boundary con-

ditions are derived by processing the objective function augmented

by the volume integrals of the state (flow) equations multiplied by

the adjoint variables. The adjoint equations are then discretized and

solved [1–3]. On the other hand, in the discrete adjoint method the

state equations are discretized first and the discrete adjoint equations

are deduced from the discretized state equations [4–6]. The present

article is concerned exclusively with the continuous adjoint method.
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Any comparison between the continuous and discrete adjoint meth-

ods is beyond the scope of this paper.

When dealing with turbulent flow problems, the state PDEs com-

prise the mean-flow and turbulence model equations. Computing ac-

curate sensitivity derivatives requires the differentiation of all state

PDEs. However, in the majority of articles based on the continuous

adjoint method, it is a common practice to avoid the differentiation of

turbulence models [2,3,7,8]. This simplification is often referred to as

the “frozen-turbulence” assumption. The differentiation of the turbu-

lence model equations using the continuous adjoint method was ini-

tially addressed in [9], for the low turbulence Reynolds number vari-

ant of the Spalart–Allmaras model for incompressible flows. Later on,

the continuous adjoint approach to the same turbulence model for

compressible flows was also presented in [10]. The linearization of

the turbulence model equations using discrete adjoint is more com-

mon and can be found, among other, in [11–15]. A hybrid adjoint

method, in which the continuous adjoint mean flow equations are

combined with the discrete adjoint turbulence model, was presented

in [16].

In [17], the continuous adjoint method was extended to cases in

which the mean–flow equations are coupled with the k–ε turbu-

lence model and the wall function technique. There, the introduc-

tion of the adjoint law of the wall allowed for the adjoint system

of PDEs to be treated similarly to the state equations close to the

solid walls. In [18], a review on continuous adjoint methods for turbu-

lent flows, including the adjoint to the Spalart–Allmaras model with

wall functions was presented, there for objective functions defined
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as surface integrals. Here, the continuous adjoint method to the same

model is extended to also cover objective functions defined as vol-

ume integrals. The cell-centered, pressure-based implementation of

the Spalart–Allmaras model with wall functions as programmed in

OpenFOAM© is used as the basis of the developed adjoint formula-

tion. This summarizes the first part of this article (Sections 2–5).

In the second part, the developed adjoint method is used to com-

pute the sensitivity derivatives of an objective function expressing

the noise perceived by the driver of a passenger car. According to

Proudman’s model [19], the acoustic power generated by isotropic

turbulence can by derived from Lighthill’s Theory of Aerodynamic

Noise. Proudman’s formula, in turn, can be correlated to the turbu-

lent kinetic energy and dissipation or the levels of turbulent viscosity.

So, in order to capture the noise perceived by the driver, the objec-

tive function is formulated as the volume integral of the square of the

turbulent viscosity over a slim domain residing next to the driver’s

window. Since the highest levels of turbulence appear at the lower

frequencies of the energy spectrum, this is a good surrogate model

for low frequency noise. In this case, if the “frozen turbulence” as-

sumption was made, the adjoint method would not have been able

to provide any kind of sensitivity information, since the objective

depends exclusively on turbulence. Before applying the developed

method to a real-world application, its verification is conducted on

the flow around an isolated airfoil (Section 7). There, the computed

sensitivities are compared to finite differences (FD) and the loss in ac-

curacy caused by avoiding the differentiation of the law of the wall is

quantified. Then, the developed adjoint approach is used to optimize

the side mirror shape of a passenger car. To this end, volumetric B-

Splines [20,21], are used to parameterize the side-mirror surface and

handle the mesh displacement during the optimization loop. After

a few optimization cycles, a considerable reduction in the objective

function is achieved (Section 8).

2. State (Flow) equations

The flow model consists of the Navier–Stokes equations for in-

compressible flows coupled with the Spalart–Allmaras turbulence

model [22]. The mean-flow equations are given by

Rp = −∂v j

∂x j

= 0 (1a)

Rv
i = v j

∂vi

∂x j

− ∂τi j

∂x j

+ ∂ p

∂xi

= 0, i = 1, 2(, 3) (1b)

where p is the static pressure divided by the constant density, vi is the

velocity component, τi j = (ν + νt)(
∂vi
∂x j

+ ∂v j

∂xi
) is the stress tensor, ν is

the constant bulk viscosity and νt is the turbulent viscosity. In what

follows, repeated indices imply summation unless stated otherwise.

The turbulence model equation reads [22],

Rν̃ = v j

∂ν̃

∂x j

− ∂

∂x j

[(
ν + ν̃

σ

)
∂ν̃

∂x j

]
− cb2

σ

(
∂ν̃

∂x j

)2

− ν̃P + ν̃D = 0 (2)

where ν̃ is the turbulence state variable. The eddy viscosity coeffi-

cient νt is expressed in terms of ν̃ as follows:

νt = ν̃ fv1
(ν̃) (3)

The model functions and constants can be found in [22] or [9].

Special attention must be paid to the treatment of vi and νt over

the boundary faces (index f) where the wall function technique is em-

ployed. As programmed in OpenFOAM©, wall functions are based on a

single formula modeling both the inner sublayer and the logarithmic

part of the turbulent boundary layer [23]

fWF = y+
P − v+

P − e−κB

[
eκv+

P − 1 − κv+
P − (κv+

P
)2

2
− (κv+

P
)3

6

]
= 0

(4)

where κ = 0.41, B = 5.56 and the non-dimensional distance and ve-

locity at the first cell-center P off the wall are

y+
P = �Pvτ

ν
, v+

P = |vi|P

vτ
(5)

Here, vτ is the friction velocity, computed over the wall faces as

v2
τ = −τi j

∣∣ f
n jt

I
i (6)

where nj and tI
i

refer to the components of the unit vectors which are

normal to the wall and parallel to the velocity (which is considered to

be parallel to the wall) at the first cell P. In addition, in 3D simulations,

the components of the third unit base vector of a local orthogonal

system are defined as tII
i

= ei jkn jt
I
k
.

Since v f
i

= 0, the viscous flux at the wall boundary face f is given

by

−τi j

∣∣ f
n j =

(
ν + ν f

t

) vP
i

|P f | (7)

i.e. the normal velocity gradient at f is computed through a local

finite-differences scheme, where |Pf| is the distance of the center of

the first cell P to the boundary face. However, the differentiation nor-

mal to the boundary must be avoided on the coarse meshes used in

conjunction with wall functions. To this end, Eq. (7) is corrected by

computing an “artificial” ν f
t , so that the wall shear stress computed

by Eq. (4) and the one computed by differentiating the velocity field

and multiplying by ν f
t be identical. Solving the flow equations using

the wall function technique means that Eq. (4) is solved for vτ , by also

taking Eq. (5) into consideration, at each face f using the Newton–

Raphson method and, then, Eq. (6) adjusts ν f
t accordingly.

Finally, the so-called Hamilton–Jacobi equation [24],

R� = ∂(c j�)

∂x j

− �
∂2�

∂x2
j

= 0 (8)

where c j = ∂�/∂x j, is solved to provide the distance to the wall field,

�, at all interior cell-centers.

3. A general objective function

A general objective function F consisting of a volume integral

(such as the one used in Section 6) can be expressed as

F =
∫
	

F	d	 (9)

where 	 is the computational domain. The continuous adjoint

method, including the adjoint wall functions technique, for objective

functions defined as integrals over the boundary S of the computa-

tional domain is presented in detail in [18] and will not be discussed

herein.

Differentiating F w.r.t. the design variables bn, n ∈ [1, N], after tak-

ing into consideration the Leibniz theorem for volume integrals with

variable boundaries, yields

δF

δbn
=

∫
	

∂F	
∂bn

d	 +
∫

S

F	nk

δxk

δbn
dS (10)

In Eq. (10), the symbol δ(·)/δbn denotes the total (or material) deriva-

tive w.r.t. the design variables and represents the total change caused

by variations in bn. The partial derivative ∂(·)/∂bn represents the vari-

ation caused purely due to changes in the flow variables (in turn,

caused by the geometry deformation) without considering space de-

formations. The partial and total derivatives of an arbitrary variable

� are linked through

δ�

δbn
= ∂�

∂bn
+ ∂�

∂xk

δxk

δbn
(11)
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