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a b s t r a c t

A lattice-Boltzmann model (LBM) of unstable flows amid easily permeable obstructions consisting of regular

arrays of wires is presented. The obstacles are modeled by forces incorporated as source terms in the LBM

equation, following the same procedure as the immersed boundary method. Yet the present method differs

from the latter in that the structure is represented by a volumetric array of fixed points. Also each structural

point exerts reactive forces governed by the Darcy law, rather than by elastic kinematics. The model is vali-

dated against two experiments consisting of air flowing in a channel partially obstructed by arrays of wires,

finding excellent agreement. The simulations reveal the formation of complex vortical structures amid the

wired region, which can be of interest in understanding natural phenomena or practical applications.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical modeling of flows in easily permeable media, like

the flow amid complex arrays of small obstacles, is a challenging

task. This kind of flows occurs in a number of interesting cases, like

fluid currents around crops or aquatic plants [6,13,21]. In techno-

logical applications they are encountered for example in the cool-

ing of electronic components. A comprehensive review on com-

pound channels and flows parallel to rod bundles can be found in

Meyer [15].

An interesting feature of these flows is that they easily become un-

stable in the boundaries between the permeable regions and the free

flow [28]. This instability is associated to inflexion points of the ve-

locity profile, and manifests as coherent wavy and vortical structures

that amplify the momentum and scalar transversal diffusion [3,18].

These structures are useful for they modify the transport of scalars

not only at the interface where structures are generated, but also in-

side and outside the obstruction, favoring processes such as pollina-

tion, nutrient transport, and heat and mass transfer [5,23]. A number

of recent analytical studies have been aimed to characterize the sta-

bility of partially permeable channels [14,24,25,28].

From the point of view of modeling, finding adequate represen-

tations of the arrays of obstacles, that capture the characteristics of

the mentioned instabilities while keeping reasonable computational

costs, is not a trivial task. The lattice Boltzmann method (LBM) has

shown an impressive versatility to model porous media and flows
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through regions partially blocked by obstacles ([19,7,10,27]). For a

good review of applications of LBM to porous media (see Sukop and

Thorne [26]). Moreover, recently it has been shown that flow insta-

bilities in cavities can be simulated using LBM [2,8].

The present article reports the modeling of the sustained oscilla-

tory flow in a channel with low Reynolds number partially obstructed

by an array of wires. The wired region is modeled by Darcy-like forces

imposed around the location of each wire. This is a major difference

from a previous approach based on local bounce-back corrections,

which produced less accurate results and introduced spurious mass

sources [4]. The model is validated against two experiments consist-

ing of air flowing in a channel partially obstructed by arrays of wires

in different configurations.

2. Modeling

From the numerical point of view, LBM can be seen as an explicit

method to solve transport equations using more variables than the

strictly necessary to characterize the macroscopic flow. It is based

on the movement and collision of pseudo-particles described by the

lattice–Boltzmann equation:

fi(�x + �ei�x, t + �t)

= fi(�x, t) − 1

τ

[
fi(�x, t) − f e

i (�x, t)
]

+ Si(�x, t), for i = 0, . . . , � − 1

(1)

where fi(�x, t) and Si(�x, t) represent the particles distribution density

and source at position �x and time t, undergoing a displacement �ei�x

in a time step �t. The vectors �ei form a finite set of � lattice directions
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that restrict the movement of the particles. In what follows the so

called D2Q9 model will be used, which approach to second order the

two-dimensional Navier–Stokes equations and is given by the set:

�e0 = (0, 0); �e1 = (1, 0); �e2 = (0, 1); �e3 = ( − 1, 0); �e4 = (0,−1);
�e5 = (1, 1); �e6 = ( − 1, 1); �e7 = ( − 1,−1); �e8 = (1,−1). (2)

Using an asymptotic expansion, it has been demonstrated that the

LBE approximates the Navier–Stokes equations, provided that the so

called equilibrium function f e
i
(�x, t) satisfies a set of constitutive con-

ditions related to the moments of fi(�x, t) respect to �ei. Comprehensive

reviews of this procedure can be found elsewhere [9,22,29]. A popular

scheme complying with these conditions is the classical BGK, which

for D2Q9 is given by:

f e
i (�x, t) = wiρ

[
1 + 3

(v�ei · �u)

v2
− 3

2

u2

v2
+ 9

2

(v�ei · �u)
2

v4

]
, (3)

where v = �x/�t is the particle speed and:

ρ =
∑

i

fi(�x, t) and �u = 1

ρ

∑
i

v�ei fi(�x, t) (4)

are the particle-number density and average velocity. The coefficients

wi are 4/9 for the resting particles, 1/9 for the Cartesian directions and

1/36 for the diagonal directions. In such case, the relaxation parame-

ter τ is related to the kinematic viscosity of the fluid by:

υ = (2τ − 1) �x2/(6�t) (5)

and the pressure is calculated using the isothermal pseudo equation

of state:

p = 1

3
ρv2. (6)

The termSi(�x, t) is generally used to account for external forces.

There is certain flexibility to manage this term. In the present work, it

is assumed that a volumetric force �F(�x, t) can be applied in each cell,

and the following expression recommended by Mohamad & Kuzmin

[16] will be used:

Si(�x, t) = 3
�t

v
wi�ei · �F(�x, t). (7)

In effect, contracting the velocity index of Si and �eiSi yields:∑
i

Si = 3
�t

v
∑

i

wi�ei · �F = 0 (8)

which ensures mass conservation, and

∑
i

ν�eiSi = 3 �t
∑

i

wi �ei ⊗ �ei · �F = 3�t

(
1/3 0

0 1/3

)
· �F = �t�F

(9)

provides the momentum bit to the cell driven by the volumetric

force.

2.1. Model of the permeable media with LMB

The permeable media was simulated by means of source terms

accounting for the drag forces imposed by the array of obstacles in the

channel. The rationale behind this method is to simulate the Darcy’s

law, which states that the volumetric drag force
−→
F D of permeable

media is given by:

�FD = −ρυ

κ
�u (10)

where κ is the permeability of the media.

The direct way to incorporate Darcy’s law in LBM is to distribute

the force uniformly in each cell of the permeable region, by intro-

ducing Eq. 10 in the source term. Although this is attractive for its

simplicity, the numerical tests showed significant differences with

the experimental data, particularly in transient and unstable condi-

tions. In the present case, the main reason of the poor performance

of a homogeneous model of forces is that the actual permeable me-

dia where the experiments were carried out is not homogeneous but

it is composed by discrete thin wires that oppose to the flow locally.

In order to simulate more closely the wire array while maintaining

the simplicity of Darcy’s law, another model is proposed in which the

force term is applied in the neighborhood of each wire location. This

is implemented following the same procedure as in the immersed-

boundary method (IBM) used in fluid-structure interaction schemes

[20,1].

In IBM the fluid is represented on an Eulerian coordinate whereas

structures are represented by collections of parametric curves or sur-

faces on a Lagrangian coordinate. The forces exerted by the immersed

boundary on the fluid are incorporated as source terms in the fluid

equation via smooth approximations of the Dirac δ distribution. The

immersed boundary is considered as a massless elastic fiber or mem-

brane that moves with the local fluid velocity interpolated with the

same δ distribution approximation.

In the present approach permeable structures are coupled with

the fluid through smooth approximations of the δ distribution as in

IBM. However, the present method differs from IBM in that the struc-

ture is represented by volumetric arrays of fixed points on the same

Eulerian coordinate grid as the fluid, over which each structural point

exerts reactive forces governed by the Darcy law rather than by elas-

tic kinematics. The permeable region is accordingly defined by a set of

reference points xk, each of which introduces a source term Ski(�x, t)to

the cells located in its neighborhood, given by:

Ski(�x, t) = −3
�t

v
ρυ

κ
Nkδ(�xk, �x) wi �ei · −→

u k (11)

where Nk is the number of LB cells that constitute a unit cell of the

permeable media and

δ(�xk, �x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

C(r)

[
1 + cos

π(x − xk)

r �x

] [
1 + cos

π(y − yk)

r �x

]

i f

∣∣∣∣ (x − xk)

r �x

∣∣∣∣and

∣∣∣∣ (y − xk)

r �x

∣∣∣∣ < 1

0 otherwise

. (12)

In other words, the force is distributed among the cells located at

a distance r�x in each direction from the reference point. The radius

of influence r is used for calibration purposes and it is expected to

depend on the obstacle specifics (shape, size, roughness, etc.). C(r) is

a normalization factor given by:

C(r) =
[

r∑
n=−r

(
1 + cos

πn

2r

)]−2

. (13)

The characteristic velocity of the neighborhood �uk is defined as:

�uk =
∑
�x

δ(�xk, �x) �u(�x). (14)

In Eq. (14) the summation is performed over all the cells of the

grid, although the factor δ(�xk, �x) restricts the effect only to the cells

within the zone of influence of the reference point �xk.

3. Experiment

An experimental setup was constructed in order to provide a ref-

erence case and reliable measurements to compare with the numer-

ical model. The test section, shown in Fig. 1, is a rectangular channel

with transparent acrylic walls. The working fluid is ambient air that

enters the channel from one end and is forced out by a fan located

on the other end. The obstructed region consists of a regular array

of copper wires lined horizontally across the test section, occupying
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