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a b s t r a c t

This article deals with the development of adaptive multiresolution coupled with a one-step shock-capturing

scheme for the numerical simulation of unsteady compressible flows in the transonic and supersonic regimes

with high frequency oscillations. The discretization of the convective terms is based on a coupled time and

space approach by using a one-step (OS) scheme, developed following the Lax–Wendroff approach by correct-

ing the successive modified equations. A monotonicity preserving (MP) criterion is added in order to locally

relax the TVD constraints for such schemes. The adaptive strategy relies on the Harten cell-average multires-

olution analysis, with a dynamical data structure organized as a graded tree that dynamically evolves in time.

We apply the method to several prototype test-cases of shock-wave propagation interaction. We validate this

approach on 2D inviscid advection of a vortex. We then present 2D viscous test-cases of shock-shear layer

interactions and a 3D spherical Riemann problem to demonstrate the capability of the present method. Re-

sults demonstrate that 7th order OSMP schemes coupled with adaptive grid refinement gives very accurate

results in comparison with more classical schemes applied on a single grid. We then propose an appropriate

MR threshold parameter value that ensures accurate results while achieving drastic gains on the CPU time

and memory usage.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In the high speed flow regime, many aerodynamic configurations

involve interactions between shock waves and turbulence such as,

for instance, within air intakes, compressor or turbine configura-

tions where shock wave/turbulent shear layer (e.g. boundary layer)

interactions occur. An accurate prediction of such interactions is

of importance in effective design of transsonic or supersonic vehi-

cles since they greatly affect the aerodynamic loads. At the present

time, it is commonly admitted that advanced numerical simulations

(mainly LES) are powerful tools for accurate predictions of shock

wave turbulent shear layer interactions, including large-scale flow

phenomena [18,23]. In these approaches, the quality of the solu-

tions depends not only on the capability of the numerical scheme

associated with the sub-grid modelings in LES but also on the ability
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of the computational grid to capture the governing dynamical pro-

cess. In fact, when dealing with shock waves, LES computations must

however use numerical schemes which can both represent small

scale structures with the minimum of numerical dissipation, mainly

to minimize the interaction with the sub-grid scale model, and cap-

ture discontinuities with robustness [15,42]. Nevertheless, some phe-

nomena could not be accounted by sub-grid modeling and accurate

schemes coupled with locally very fine grid are needed to recover a

high quality of the solution. For instance, according to the theoret-

ical developments in the Linearized Interaction Approximation, the

shock-wave/turbulence interaction phenomenon requires the correct

prediction of the shock wave deformation occurring at small scales.

These small scale shock deformations which could not be accounted

by LES modeling, need locally very fine grid. The production of vor-

ticity through baroclinic effect is also a phenomenon largely encoun-

tered in real flow physics that could not be accounted by sub-grid

modeling and needs accurate numerical scheme on grid tightened

in the production regions. These examples show that it is neces-

sary to dynamically refine the grid locally, in the regions where the

unsteady phenomena occur. It then motivates the introduction of

self-adaptive discretization, as the solution may be over-resolved in
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large subsets of the computational domain when using equidistant

fine grids. Therefore, to be efficient in terms of CPU time and mem-

ory usage, a mesh refinement method must be employed to save

grid points in smooth regions and to concentrate them in the re-

gions where phenomena (discontinuity, vorticity production, ...) oc-

cur. To be adequate for the DNS or LES approaches, the mesh refine-

ment techniques must be based on multi-resolution analysis(MRA)

that provides error estimates on the solution. This paper aims at con-

tributing to the development and assessment of mesh refinement

techniques based on error estimates coupled with high-order shock

capturing schemes to capture small scale mechanisms, encountered

in many aerodynamic flows, that have no concern with classical sub-

grid scale models.

In the literature, most numerical integrations that have been de-

veloped up to now can be divided into two classes: on one hand, the

coupled space-time methods ; on the other hand, the methods based

on separate time and space discretizations.

Most separate time-space methods are based on high-order

multi-stage Runge-Kutta (RK) time integrations. At each stage, a

high-order space discretization is applied, which usually contains in

the flux computations a limiting procedure to prevent spurious os-

cillations. While a lot of work on separate time-space methods is

still under investigation, the most commonly used of these space

schemes are the ENO/WENO family [22,35–37]. It has been shown

that these schemes are very accurate in smooth regions, capture very

well the shock-waves but show a too diffusive behavior in the vicin-

ity of contact discontinuities. Investigations have been undertaken

to get better predictions using WENO-based schemes [1,21,31,32].

Moreover, these schemes are very expensive in terms of CPU

time.

Coupled time-space schemes are usually developed following the

Lax–Wendroff approach. Among them, the one step (OS) schemes

have been developed, first for 1D (linear and non-linear) scalar

equations, and then extended to multi-dimensional systems of non-

linear equations (Daru and Tenaud [14,15]). Such schemes have a

minimal stencil, and optimal non-oscillatory conditions, based on

monotonicity-preserving constraints, can easily be implemented.

These accurate numerical schemes offer a compromise between high

accuracy in smooth regions and an efficient shock capturing tech-

nique. They provide very accurate results, which compare well to

high-order separate time-space classical schemes, at a lower cost

[15].

Besides the numerical scheme, the quality of solutions also de-

pends on the capability of the computational grid to capture the gov-

erning dynamical mechanisms. In that sense, adaptive techniques for

problems exhibiting locally steep gradients or shock-like structures

have been developed since the end of the 1970s. Historically, adap-

tive methods like multi-level adaptive techniques(MLAT) (Brandt [9])

or adaptive mesh refinement (AMR) (Berger et al. [3–5]) were the

first to achieve this goal, using a set of locally refined grids where

steep gradients of high truncation errors are found. However, the data

compression rate is high where the solution is almost constant, but

remains low where the solution is regular. To overcome this diffi-

culty, adaptive multiresolution methods, based on Harten’s pioneer-

ing work [20], have been developed for 1D and 2D hyperbolic conser-

vation laws (Cohen et al. [13], Müller et al. [19]). They have then been

extended to 3D parabolic problems (Roussel et al. [34]). First simu-

lations of 3D supersonic flows in the laminar regime using adaptive

multiresolution methods were performed by Bramkamp et al. [7,8],

with separate RK/ENO time-space discretizations. It has been shown

in these papers that a high compression rate can be reached for so-

lutions with inhomogeneous regularity. For an overview on adaptive

multiresolution techniques, we refer to the books of Cohen [10] and

Müller [26].

This paper aims at evaluating in practical situations the ca-

pability of the multiresolution adaptive technique coupled with a

one-step shock capturing scheme to recover elementary physical

mechanisms by achieving gains in both CPU time and memory us-

age compared to single grid computations. Numerical simulations are

conducted on both inviscid and viscous compressible flows with high

frequency oscillations in the transonic and supersonic regimes. As

far as there could exist a competition between the discretization er-

ror of the scheme and the perturbation error introduced by the MR

technique, we use several approximation orders of the OSMP scheme

on several grids. The question that arises is: is it better to employ

a low order (at least 2nd order) scheme on a very refined grid than

use a high order scheme on a coarse grid? Through comparisons with

2nd and 3rd order schemes, we then explore the efficiency of a high

order scheme coupled with the MR technique. We then propose an

appropriate MR threshold parameter value that ensures accurate re-

sults, while achieving drastic gains on the CPU time and memory

usage.

The paper is organized as follows. After a brief review of the gov-

erning equations (Section 2), we present in Section 3 the numerical

approach used in this work: the so-called OSMP scheme (based on

coupled time and space integration with MP constraint). Section 4 is

dedicated to detail the multiresolution procedure. The evaluation of

the method is then presented in Section 5 on several numerical re-

sults, 2D and 3D inviscid configurations and 2D configurations where

viscous effects are present. Finally we conclude and present perspec-

tives for future works.

2. Governing equations

We consider the Navier–Stokes equations expressed in dimen-

sionless form using Cartesian coordinates:

wt + ∇ · (fE(w) − fV (w,∇w)) = 0, (1)

where w = (ρ, ρu, ρE)t is the vector of the conservative variables,

using the classical notations, and fE(w) and fV are the Euler and the

viscous fluxes respectively:

fE =

⎛
⎜⎜⎜⎝

ρ u

ρ u ⊗ u + P

γ M2
0

I

ρ u E + u
P

γ M2
0

⎞
⎟⎟⎟⎠, (2)

fV =
(

0
σ

u · σ + �

)
, (3)

with the strain rate tensor

σ = μ

Re

(
∇u + ∇t u − 2

3
∇ · u I

)
,

and the heat flux

� = μ

(γ − 1) Re Pr M2
0

∇T.

In addition, a perfect gas law is needed:

P

γ M2
0

= (γ − 1)
[
ρ E − 1

2
ρ u · u

]
, (4)

T = P

ρ
, (5)

with ρ the fluid density, u the velocity vector, P the static pressure, T

the static temperature, E the total energy per unit of mass and μ the

dimensionless dynamic viscosity.

These equations are written in dimensionless form using the ref-

erence values of the density (ρ0), the velocity (v0), and the length

scale (L0). The Reynolds number is based on the reference values:
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