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a b s t r a c t

This paper presents a new sliding mesh technique for the computation of unsteady viscous flows in the
presence of rotating bodies. The compressible Euler and incompressible Navier–Stokes equations are
solved using a higher-order (>2) finite volume method on unstructured grids. A sliding mesh approach
is employed at the interface between computational grids in relative motion. In order to prevent loss
of accuracy, two distinct families of higher-order sliding mesh interfaces are developed. These
approaches fit naturally in a high-order finite volume framework. To this end, Moving Least Squares
(MLS) approximants are used for the transmission of the information from one grid to another. A partic-
ular attention is paid for the study of the accuracy and conservation properties of the numerical scheme
for static and rotating grids. The capabilities of the present solver to compute complex unsteady vortical
flow motions created by rotating geometries are illustrated on a cross-flow configuration.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Flow unsteadiness and noise generation are currently among
the most important limitations for the design of turbomachinery
and renewable energy devices. These configurations involve com-
plex unsteady flow patterns like vortex shedding, stalled flows,
blade wake interactions which are, in general, due to the presence
of moving or oscillating bodies. On one hand, one must employ
high-order numerical methods to accurately compute both the
unsteady flow field and the aeroacoustic field. On the other hand,
dedicated techniques must be employed to carefully deal with
the interface between static and moving grids in an unsteady flow
framework. Such issue can be addressed using several numerical
approaches, among others, the phase-lagged periodic boundary
conditions for rotor–stator interaction in axial compressor
[10,16,17], the body-fitted approach in an Arbitrary Lagrangian
Eulerian (ALE) setting, Cartesian grid methods based on the
immersed-boundary [40] or on the cut cell methods [3,54] and
the non-boundary conforming sliding mesh approach. The later is
attractive due to its ability to capture flow unsteadiness without
requiring the use of a filtering procedure nor computationally

expensive re-meshing strategies. The sliding mesh method was
successfully employed by Rai [42,43] for the computation of
rotor–stator interactions in a supersonic flow. This patched-grid
technique allows relative sliding of one mesh adjacent to another
static or moving mesh. A three steps explicit zonal scheme, which
preserve flux conservation at the interface, is proposed in [41].
More recently, Gourdain et al. [15] employed the sliding mesh
approach for the simulation of large-scale industrial flows in mul-
tistage compressors. In a comparative study between Chimera and
sliding mesh techniques for unsteady simulations of counter rotat-
ing open-rotors, Francois et al. [14] shown that these methods give
similar accuracy but the later requires much less memory than the
Chimera approach. Note also that the sliding mesh algorithm was
used by Steijl and Barakos [46] for the computational fluid
dynamic analysis of helicopter rotor-fuselage aerodynamics.

Nowadays, sliding mesh techniques are commonly used to
compute non-axisymmetrical unsteady flow fields and corre-
sponding aerodynamic performances of cross-flow fans [33,49]
and wind turbines [18,20,21,23,26,19,22,1]. In particular,
McNaughton et al. [31] obtained a good agreement between cou-
pled LES-sliding interfaces for thrust and power predictions of a
tidal-stream turbine. As far as aeroacoustic computations are con-
cerned, Moon et al. [33] developed a time-accurate viscous flow
solver for the prediction of unsteady flow characteristics and the
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associated aeroacoustic blade tonal noise of a cross flow impeller.
The sliding mesh approach, which was implemented in an
unstructured finite-volume solver on triangular meshes, was able
to correctly predict the oscillations of the eccentric vortex due to
the mismatch of blade incidence angles and the recirculation
bubbles around the blades.

However, most of the sliding mesh methods proposed in the lit-
erature belong to the family of low order interpolation schemes.
Therefore they cannot be used in conjunction with higher-order
numerical schemes without depreciating the overall accuracy of
the numerical methods.

To the authors knowledge, few studies addressed such problem.
A high order (order P 3) h=p Discontinuous Galerkin method with
sliding mesh capabilities was recently proposed by Ferrer and
Willden [12] for the computation of the unsteady incompressible
flow field of a three bladed cross-flow turbine. They have
successfully obtained spectral convergence rate when solving the
incompressible Navier–Stokes equations on non-conformal grids.
In [2] a mesh moving technique for sliding interfaces is presented
for the numerical simulation of a wind turbine with a FEM-based
ALE-VMS (variational multiscale formulation written in the
arbitrary Lagrangian–Eulerian frame) formulation.

In this work, we intent to develop higher-order sliding mesh
interface for the solution of transient flows on mixed rotating
and static computational domains. To this end, we consider a
high-resolution finite volume method based on Moving Least
Squares (MLS) reconstructions.

The theoretical fundamentals of the used finite volume method
(FV-MLS) were presented in [9,24,36,35,44] and references therein.
A first application of FV-MLS for turbomachinery aeroacoustics was
presented in [38]. In those works, artificial acoustic sources were
propagated using the Linearized Euler Equations. Only stator
blades and rotating sources into the propagating medium were
considered. This first tentative permits to study the attenuation
due to the acoustic screen effect of stator blades. The next step is
to introduce the rotating part into the propagation medium by
the use of sliding mesh method coupled to FV-MLS solver. In this
work we present a sliding mesh model based on the use of
Moving Least Squares (MLS) approximants [25]. It is used with a
high-order (>2) finite volume method that computes the deriva-
tives of the Taylor reconstruction inside each control volume using
MLS approximants [9,24,36,35]. Thus, this new sliding mesh model
fits naturally in a high-order finite volume framework for the com-
putation of acoustic wave propagation into turbomachinery. We
present two different approaches based on MLS approximants for
the transmission of information from one grid to another. An
interface-type sliding mesh approach, and a new methodology that
does not require the computation of intersections.

The paper is organized as follows. In Section 2 the governing
equations are written. In Section 3, the basic finite volume formu-
lation is presented. Moving Least Squares (MLS) approximation
and the FV-MLS method are briefly described in Section 4. The
new MLS-based sliding-mesh technique is presented in Section 5.
Then, Section 6 is devoted to numerical simulations. Finally, the
conclusions are drawn.

2. Governing equations and numerical methods

In order to account the relative mesh motion of one mesh with
respect to other, it is advantageous to write the two dimensional
compressible Navier–Stokes equations in the Arbitrary
Lagrangian–Eulerian (ALE) form,
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For compressible flows the conservatives variables are defined
as
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and the inviscid fluxes are given by
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where the ðumesh;vmeshÞ is the mesh velocity. The viscous fluxes FV

are given by the following expression,
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The viscous stresses are modeled as

sxx ¼ 2l @vx

@x
� 2

3
l @vx

@x
þ @vy

@y

� �
syy ¼ 2l @vy

@y
� 2

3
l @vx

@x
þ @vy

@y

� �
sxy ¼ l @vx

@y
þ @vy

@x

� �
ð5Þ

For incompressible flows, the assumption of incompressibility
lead us to a system of equations with the following variables
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The inviscid fluxes are
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The viscous fluxes are given by
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3. Basic finite volume formulation

The basic finite volume discretization stems from the integral
form of Eq. (1) over a control volume XIZ

XI
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Using the divergence theorem for the viscous and inviscid
fluxes the following expression is obtained
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