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a b s t r a c t

In the present paper, weakly enforced no-slip wall boundary conditions are revisited in the context of
Large-Eddy Simulations (LES) with near-wall modeling. A new formulation is proposed in the framework
of weakly enforced no-slip conditions that is better aligned with traditional near-wall modeling
approaches than its predecessors. The new formulation is tested on turbulent open-channel flows at
friction-velocity-based Reynolds numbers Res ¼ 395 and 950 benchmark problems. The computations
are performed using the Residual-Based Variational Multiscale (RBVMS) formulation of LES, discretized
using Isogeometric Analysis (IGA) based on Non-Uniform Rational B-Splines (NURBS). The new
near-wall model formulation gives more accurate results for the mean flow and velocity fluctuations than
its older versions, while exhibiting better numerical stability than traditional near-wall modeling
techniques.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In large-eddy simulations (LES) [31] of wall-bounded turbulent
flows, near-wall sharp gradients of the velocity field, and small
eddies scaling with distance to the wall, give rise to undesired
computational costs associated with fine grids and small time
steps needed to resolve these features. Near-wall modeling is often
employed to significantly reduce these costs [28]. In LES with
near-wall modeling (LES-NWM), while the core flow is reasonably
well resolved, the unresolved near-wall region is modeled through
suitable boundary conditions, which obviates the need to use small
time steps and fine meshes in the near-wall region. This is in con-
trast to LES with near-wall resolution (LES-NWR), in which the
mesh is made finer near the wall, and the time-step size is reduced
in order to capture the finer spatial and temporal scales of
near-wall turbulence. With the significant reduction in computa-
tional cost brought about with near-wall modeling, more realistic
problems in terms of computational-domain size, geometric com-
plexity, and Reynolds number may be solved with LES-NWM as
opposed to with LES-NWR or direct numerical simulation (DNS).
The latter two are mostly employed to study turbulent-flow phy-
sics at relatively low Reynolds number in configurations of reduced
geometric complexity.

In traditional near-wall modeling, instead of imposing the
no-slip boundary conditions at the wall, the wall shear stress
boundary conditions are prescribed. The following procedure is
usually employed: Assuming the LES-resolved mean flow satisfies
the log law, which is part of the well-known law-of-the-wall [32],
the associated wall friction velocity is extracted, and, in turn, used
to compute the magnitude of the prescribed wall shear stress. (The
direction of the prescribed wall shear stress vector is given by the
slip velocity.) Because the wall friction velocity is a nonlinear func-
tion of the LES-resolved flow velocity, an iterative procedure is nec-
essary to compute it. We also note that the LES-resolved mean
velocity used to extract the wall shear stress from the
law-of-the-wall is often computed by averaging the flow field in
space, typically over homogeneous flow directions, which makes
the stress boundary conditions nonlocal.

An alternative approach to reduce mesh- and time-step-size
requirements in wall-bounded turbulent flows was introduced in
[8]. The approach is based on so-called weak enforcement of
Dirichlet no-slip conditions at the solid wall. More specifically,
the formulation at the discrete level is based on the variational
(or weak) form of the Navier–Stokes equations, which is aug-
mented by terms that enforce no-slip conditions weakly as
Euler–Lagrange conditions. This construction results in a numerical
technique that satisfies no-slip conditions exactly only in the limit
as the mesh size at the wall approaches zero. As a result, for a given
mesh, the method allows a certain amount of flow slip at the wall,
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which scales with the appropriate power of the wall-normal mesh
size. Allowing the flow to slip at the solid boundary removes some
of the burden from the boundary-layer mesh to resolve the sharp
velocity gradients near the wall, which, in turn, results in remark-
ably accurate solutions for boundary-layer flows on meshes that
would be considered ‘‘too coarse’’ by most CFD practitioners. (See
Refs. [10,9,1,18,19] that highlight the coarse-mesh accuracy of
weakly enforced no-slip conditions, both for well-known turbulent
flow benchmark problems as well as for engineering applications.)

The method of weak enforcement of no-slip conditions is an
extension of Nitsche’s idea for imposing essential boundary condi-
tions weakly [27], and is now commonly referred to as Nitsche’s
method. The method may also be thought of as the SIPG
Discontinuous Galerkin technique (see [40]) applied only at the
solid boundary. An important component of the weak boundary
condition formulation is the penalty term whose integrand
contains the deviation of the discrete solution from the no-slip
condition at the wall. The integrand of the penalty term is also
proportional to a mesh-dependent penalty parameter sB designed
to ensure numerical stability and optimal convergence under mesh
refinement. As such, weak imposition of no-slip conditions is based
on numerical considerations rather than physical ones.

The link between weakly enforced no-slip conditions and
near-wall modeling was first recognized and exploited in [10]. In
the aforementioned reference the parameter sB was computed fol-
lowing the law-of-the-wall by considering the penalty term as
being representative of the shear stress at the wall. While slight
improvement in the results was observed relative to the purely
numerical design of sB, we recognize that the formulation in [10]
was not completely consistent with the law-of-the-wall for the fol-
lowing reasons: 1. Only the penalty term was representative of the
shear stress at the wall, while the resolved molecular viscous shear
stress was neglected; 2. The resolved LES velocity at the wall,
instead of that inside the log layer, was employed to compute
the wall shear stress and the penalty parameter sB. This motivates
the development of an improved formulation for weak enforce-
ment of the non-slip boundary conditions, which we present in this
paper. The merit of this new formulation is that it is designed to
inherit the positive numerical attributes of the original formula-
tions (i.e., stability and optimal convergence) while being consis-
tent with the-law-of-the-wall. Furthermore, this better alignment
with the law-of-the-wall opens the door for future improvements
of the new formulation following the developments already made
for traditional near-wall modeling [28].

The manuscript is organized as follows. Section 2 presents the
Navier–Stokes equations of incompressible flows in the strong
and weak forms and provides some details of the residual-based
variational multiscale (RBVMS) formulation of LES [6,2,11].
Section 3 provides the details of a traditional near-wall model, as
well as near-wall models based on weak imposition of no-slip con-
ditions. The new near-wall model formulation is presented in
Section 4. Sections 5 focuses on the numerical results. We compute
pressure-gradient-driven turbulent open-channel flows at
friction-velocity Reynolds numbers Res ¼ 395 and 950 using an
isogeometric analysis (IGA) discretization based on Non-Uniform
Rational B-Splines (NURBS) [22,15]. A comparison of LES-NWM
results for the traditional near-wall model, weak BC formulation
from [10,9], and its improved version proposed in the current work
is performed. Conclusions are drawn in Section 6.

2. Navier–Stokes equations, RBVMS formulation, and near-wall
modeling

Let X 2 R3 be the problem domain and let C denote its bound-
ary. A conservative form of the dimensionless Navier–Stokes

equations of incompressible flows in the Eulerian frame may be
written as

@u
@t
þr � ðu� uÞ þ rp�r � 2mrsuð Þ ¼ f in X; ð1Þ

r � u ¼ 0 in X; ð2Þ

where Eqs. (1) and (2) represent conservation of linear momentum
and mass, respectively, assuming the fluid density is constant. In
the above equations, u and p are the fluid velocity and pressure
(divided by density), m is the kinematic viscosity,

rs ¼ 1
2 rþ ðrÞ

T
� �

is the symmetric spatial gradient, and f is a body

force per unit mass.
The RBVMS formulation of the Navier–Stokes equations of

incompressible flows is employed in this work [6,2,11]. RBVMS
originates from stabilized and multiscale methods for fluid
mechanics [13,39,21,23]. In [6] it was derived and presented for
the first time in the context of subgrid-scale modeling for LES. In
[5] a moving-domain extension of RBVMS was presented in the
framework of an Arbitrary Lagrangian–Eulerian (ALE) formulation
[20], and later called the ALE-VMS method [33]. The space–time
version of RBVMS, called ST-VMS, was recently proposed in [36]
and successfully employed in a number of fluid mechanics and
fluid–structure interaction simulations in [33,7,35,37,34]. In [6] it
was shown RBVMS performs well on laminar and turbulent flows,
and discrete solutions converge rapidly to DNS while yielding
LES-like solutions on intermediate meshes. For better approxima-
tion of thin boundary layers near no-slip walls various
wall-modeling approaches may be used. Here we focus on classical
wall-function-based techniques as well as more recently proposed
methods for weak enforcement of the no-slip Dirichlet boundary
conditions [8].

The space-discrete formulation that combines RBVMS and
near-wall modeling may be stated as: Find fuh; phg 2 Vh such that
8fduh; dphg 2 Wh,

Bðfduh; dphg; fuh;phgÞ þ Bvmsðfduh; dphg; fuh;phgÞ þ Bwmðfduh; dphg;
fuh;phgÞ ¼ ðduh; f ÞX; ð3Þ

where Vh denotes the discrete solution space for velocity–pressure
pairs fuh;phg; Wh denotes the discrete space of linear-momentum
and continuity-equation test-function pairs fduh; dphg, and ð�; �ÞA
denotes an L2-inner product over the domain A.

The semi-linear forms in the formulation given by Eq. (3) are
defined in what follows.

Bðfw; qg; fu;pgÞ ¼ w;
@u
@t

� �
X

� rw;u� uð ÞX þ ðq;r � uÞX

� ðr �w; pÞX þ rsw;2mrsuð ÞX; ð4Þ

is the Galerkin part of the weak form. Furthermore,

Bvmsðfw; qg; fu;pgÞ ¼ � rw;u0 � uþ u� u0 þ u0 � u0ð ÞX
� ðr �w;p0ÞX � ðrq;u0ÞX; ð5Þ

are the RBVMS terms, where the pair fu0; p0g denotes the velocity
and pressure subgrid scales (i.e., the scales that are too small to
be reasonably approximated on a given mesh). As in [6], the subgrid
scales are modeled as

u0 ¼ �sM
@u
@t
þ uruþrp� mDu;�f

� �
p0 ¼ �sCr � u; ð6Þ

where sM and sC are the subgrid-scale parameters defined later in
the section. The subgrid-scale parameters are also known as stabi-
lization parameters due to the similarities between RBVMS and
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