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a b s t r a c t

Industrial legacy codes usually have had long pedigrees within companies, and are deeply embedded into
design processes. As the affordability and availability of computing power has increased, these codes
have found themselves pushed into service as large eddy simulation solvers. The approximate
Riemann solver of Roe, which is frequently used as the core method in such legacy codes, is shown to
need much user care when adopted as the discretisation scheme for large eddy simulation. A kinetic
energy preserving (KEP) scheme—which retains the same advantageous stencil and communications halo
as the original Roe scheme—is instead implemented and tested. The adaptations of code required to
switch between the two schemes were found to be extremely straightforward. As the KEP scheme intrin-
sically bounds the growth of the kinetic energy, it is significantly more stable than the classical
non-dissipative schemes. This means that the expensive smoothing terms of the Roe scheme are not
always necessary. Instead, an explicit subgrid scale turbulence model can be sensibly applied. As such,
a range of mixed linear–non-linear turbulence models are tested. The performance of the KEP scheme
is then tested against that of the Roe for canonical flows and engine-realistic turbine blade cutback
trailing edge cases. The new KEP scheme is found to perform better than the original in all cases. A range
of mesh topologies: hexahedral; prismatic; and tetrahedral; are also tested with both schemes, and the
KEP scheme is again found to perform significantly better on all mesh types for these flows.

� 2015 Published by Elsevier Ltd.

1. Introduction

In many industrial codes, the emphasis is placed on the ability
to conform to complex geometries. This necessitates the use of
unstructured formulations, and frequently results in second order
algorithms being employed. Many of these industrial codes have
long pedigrees stretching back many years, and were originally
designed to perform Reynolds-Averaged Navier–Stokes (RANS)
calculations. The extreme advances in computational power and
corresponding decrease in hardware costs have brought the signif-
icantly more computationally intensive—but higher fidelity—Large
Eddy Simulation (LES) and hybrid RANS/LES methods in from the
realm of academic and intellectual investigation into the purview
of industrial design calculations.

From the point of view of both the end-user and the support
team, it is attractive to reuse as much of the RANS code as possible
in constructing an LES solver, as much of the structural framework
already exists, requiring little or no adaptation to file formats,
boundary conditions, parallelisation libraries, and substantial code

optimisation has already been conducted. To take advantage of
this, an industrial legacy RANS code is here applied to LES simula-
tions, its performance assessed, and any adaptations or improve-
ments which are found to be necessary are made.

The code used in this exercise is HYDRA, a staple of the
Rolls-Royce design process for many years. Variants of the scheme
used in HYDRA have, in the past, been used to successfully perform
a range of large eddy simulation calculations. Typically, these have
either involved relatively high Mach number—very compressible—
flows, or codes which have been heavily, and often on a
problem-by-problem basis, modified. Ciardi et al. [1] developed a
low dissipation version of the Roe scheme based on suppressing
the appearance of dispersive ‘‘wiggles’’ in the local flow solution.
A set of user-supplied constants were used to control the
trade-off between minimising excessive dissipation and ensuring
solution stability.

Other attempts to reduce any inherent dissipation have been
made over the years. Page and McGuirk [19] and Li et al. [11] chose
to calculate and use a Ducros et al. switch [3] on the smoothing
terms to try and keep the diffusion under control—the subgrid
effects themselves were then separately modelled with more
explicitly added terms. O’Mahoney et al. [18] were also compelled
to reduce the strength of the stabilising terms to avoid the
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suppression of turbulence when modelling ingestion by rim seals.
The dangers of excessive smoothing have been extensively
discussed by Tristanto et al. [23].

Examples of some successful simulations in more specific appli-
cations include the transonic Mach number jets flows of Eastwood
et al. [5], and the chevroned nozzles of Xia and Tucker [25]. In both
of these cases, the smoothing constant was geometrically sculpted
a priori, to act as a numerical turbulence model in areas of interest,
and to provide stability in the far field. This has proved a successful
approach, as long as the general nature of the flow is understood
before the sculpting is carried out.

Despite these successes and advances, the results from the use
of the Roe scheme as a discretisation for an LES solver for wider
problems—or problems involving a range of flow conditions—have
been disappointing at times, particularly when flows have been
dominated by regions with low Mach number. In this paper, it is
hoped that the problems HYDRA encounters as a legacy RANS
solver applied to LES calculations can be explained, quantified,
and mitigated as painlessly as possible.

The Euler equations are given by:

@Q
@t
þ @F

IðQÞ
@x

¼ 0 ð1Þ

This equation can be discretised in many ways, but for these
purposes, discretisations are restricted to two-point edge based
schemes, for ease of development, efficiency of parallelisation,
and simplicity of application to unstructured problems. Here, the
established Roe scheme is compared to a kinetic energy preserving
(KEP) ‘‘Jameson’’ formulation. To solve the full Navier–Stokes equa-
tions, Eq. (1) must be augmented with a viscous flux term, F V .
When these equations have been filtered onto a grid, residual
stress tensors emerge, necessitating a model for the subgrid scale
effects of turbulence.

This paper first discusses the two different numerical
approaches, after which the various test cases are introduced,
before the numerical results are presented, before finally
discussing what these findings suggest for industrial large eddy
simulation.

2. Numerical methods

The solver used in this work, in its original RANS formulation, is
built around the approximate Riemann solver of Roe [21]. In
smooth regions of the flow, away from sharp gradients such as
shocks, the inviscid flux calculation takes on the form of a central

difference of the end points of each node, smoothed by some func-
tion of the Laplacian of the conserved variable vector.

F I;S
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1
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Near to sharp gradients, the inviscid flux calculation decom-
poses to first order, and takes the form of a central difference
smoothed by some function of the conserved variable vector itself.
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The weighting of these two functions is given by a local pres-
sure switch, intended to ensure the full second order accuracy of
the former in areas of smooth flow, and to allow this accuracy to
degrade for stability in the region of strong gradients. The matrix
Aij is the inviscid flux Jacobian, Aij ¼ @FI=@Q . The variables e2 and
e3 represent user supplied constants which control the smoothing
levels. These variables, which are constants in the classical Roe
scheme, were modified by Eastwood [4] and Ciardi et al. [1] to vary
in space, and to vary in both time and space, respectively. An expli-
cit 5-stage Runge–Kutta (RK) method is used to integrate the Roe
scheme in time.

The unsmoothed fluxes themselves are given by the average of
the flux each side of the control volume face.

F I
ij ¼

1
2

qLuL/L þ qRuR/Rf g ð4Þ

This scheme brings a number of advantages to the RANS solu-
tion process. It offers considerable stability, whilst retaining sec-
ond order accuracy in smooth regions. On industrial grids, a
Courant number of 2.00 is found to be sufficient for stability (but
not, for LES, for accuracy in time), even with the smoothing and
viscous flux calculations updated only every other RK sub-step.
This leads to a considerable acceleration in steady convergence,
whilst maintaining second order accuracy away from shocks.

2.1. Conservation of kinetic energy

It is understood that as a bounding quantity of incompressible
flow, the global growth rate of kinetic energy will dictate the sta-
bility of the scheme—with a global kinetic energy growth rate of
zero, the scheme will be stable. For compressible flows, conserva-
tion of kinetic energy does not formally guarantee the stability of a
solution, but evidence suggests that it does impart some resilience
to schemes. Global kinetic energy is given by:

Nomenclature

BC continuous Burgers’ operator
C� constant
D transport discretisation operator
DK KEP transport discretisation operator
DR Roe’s transport discretisation operator
F flux vector
Ek total kinetic energy
k kinetic energy
k wavenumber
M blowing ratio
Ma Mach number
p static pressure
Q conserved variable vector
Re Reynolds number
t time
u velocity

x streamwise direction
D filter width
Dx one dimensional filter width
Dxþ; Dyþ; Dzþ non-dimensional wall distance
e2 smoothing constant
e3 smoothing constant
g film cooling effectiveness
/ convected variable
q density
sij stress tensor
�/ local mean value
/ time averaged value
/I inviscid value
/S smoothed value
/V viscous value
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