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a b s t r a c t

We present a numerical scheme geared for high performance computation of wall-bounded turbulent
flows. The number of all-to-all communications is decreased to only six instances by using a two-
dimensional (pencil) domain decomposition and utilizing the favourable scaling of the CFL time-step
constraint as compared to the diffusive time-step constraint. As the CFL condition is more restrictive
at high driving, implicit time integration of the viscous terms in the wall-parallel directions is no longer
required. This avoids the communication of non-local information to a process for the computation of
implicit derivatives in these directions. We explain in detail the numerical scheme used for the integra-
tion of the equations, and the underlying parallelization. The code is shown to have very good strong and
weak scaling to at least 64 K cores.
� 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Turbulence is known as the ‘‘last unsolved problem of classical
physics’’. Direct numerical simulations (DNS) provide a valuable
tool for studying in detail the underlying, and currently not fully
understood, physical mechanisms behind it. Turbulence is a
dynamic and high dimensional process, in which energy is trans-
ferred (cascades) from large vortices into progressively smaller
ones, until the scale of the energy is so small that they are dissi-
pated by viscosity. DNS requires solving all of the flow scales,
and to adequately simulate a system with very large size separa-
tion between the largest and the smallest scale, immense compu-
tational power is required.

The seminal works on homogeneous isotropic turbulence by
Orszag and Patterson [1] and on pressure-driven flow between
two parallel plates (also known as channel flow) by Kim et al.
[2], while difficult back then, could be performed easily on contem-
porary smartphones. Computational resources grow exponentially,
and the scale of DNS has also grown, both in memory and floating
point operations (FLOPS). In approximately 2005, the clock speed
of processors stopped increasing, and the focus shifted to increas-
ing the number of processors used in parallel. This presents new

challenges for DNS, and efficient code parallelization is now essen-
tial to obtaining scientific results.

Efficient parallelization is deeply tied to the underlying numer-
ical scheme. A wide variety of these schemes exist; for trivial
geometries, i.e. domains periodic in all dimensions, spectral meth-
ods are the most commonly used [3]. However, for the recent DNS
of wall-bounded flows, a larger variation of schemes is used. For
example, in the present year, two channel flow DNSs at similar
Reynolds numbers detailed DNSs were performed using both a
finite-difference schemes (FDS) in the case of Ref. [4] or a more
complex spectral methods in the case of Ref. [5]. FDS also present
several advantages, they are very flexible, allowing for complex
boundary conditions and/or structures interacting through the
immersed boundary method with relative ease [6]. A commonly
asserted disadvantage of low-order FDS is the higher truncation
error relative to higher order schemes and spectral methods.
However, this is only true in the asymptotic limit where the grid
spacing Dx! 0 that is commonly not reached. Additionally, alias-
ing errors are much smaller for lower order schemes [7,8]. Lower-
order schemes have been shown to produce adequate first- and
second-order statistics, but require higher resolution when com-
pared to spectral methods for high order statistics [9–11].
Because lower-order schemes are computationally very cheap the
grid resolution can in general be larger for the same computational
cost compared to higher order schemes, although one has to con-
sider the higher memory bandwidth over FLOPS ratio.
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In this manuscript, we will detail the parallelization of a sec-
ond-order FDS based on Verzicco and Orlandi [12] to two wall
bounded systems, Rayleigh–Bénard (RB) convection, the flow in a
fluid layer between two parallel plates; one heated from below
and cooled from above and Taylor–Couette (TC) flow, the flow
between two coaxial independently rotating cylinders, although
our code can easily extended to any flow that is wall-bounded in
one dimension. This FDS scheme has already been used in pure
Navier–Stokes simulations [12], with immersed boundary methods
[13], for Rayleigh–Bénard convection [14–20] and for Taylor–
Couette flow [21,22]. The numerical results have been validated
against experimental data numerous times. We will exploit several
advantages of the large Re regime and the boundary conditions to
heavily reduce communication cost; opening the possibility to
achieve much higher driving.

The manuscript is organized as follows: Section 2 describes TC
and RB in more detail. Section 3 details the numerical scheme used
to advance the equations in time. Section 4 shows that in thermal
convection, the Courant–Friedrichs–Lewy (CFL) [23] stability con-
straints on the timestep due to the viscous terms become less strict
than those due to the non-linear terms at high Rayleigh (Reynolds)
numbers. Section 5 details a pencil decomposition to take advan-
tage of the new time integration scheme and the choice of data
arrangement in the pencil decomposition. Finally, Section 6 com-
pares the computational cost of the existing and the new approach
and presents an outlook of what further work can be done to com-
bine this approach with other techniques.

2. Rayleigh–Bénard convection and Taylor–Couette flow

RB and TC are paradigmatic models for convective and shear
flows, respectively. They are very popular systems because they
are mathematically well defined, experimentally accessible and
reproduce many of the interesting phenomena observed in appli-
cations. A volume rendering of the systems can be seen in Fig. 1.
The Reynolds numbers in the common astro- and geo-physical
applications are much higher than what can be reached currently
in a laboratory. Therefore it is necessary to extrapolate available
experimental results to the large driving present in stars and galax-
ies. This extrapolation becomes meaningless when transitions in
scaling behaviour are present, and it is expected that once the
Rayleigh number, i.e. the non-dimensional temperature difference,
becomes large enough, the boundary layers transition to

turbulence. This transition would most likely affect the scaling of
interesting quantities. However, experiments disagree on exactly
where this transition takes place [24,25]. DNS can be used to
understand the discrepancies amongst experiments. However, to
reach the high Rayleigh numbers (Ra) of experiments new strate-
gies are required. DNS must resolve all scales in the flow, and the
scale separation between the smallest scale and the largest scale
grows with Reynolds number. This means larger grids are needed,
and the amount of computational work W scales approximately as
W � Re4 [26].

Simulations of RB commonly imitate the cylindrical geometry
most used in experiments. Recently, a DNS with aspect ratio
C ¼ D=L ¼ 1=3, where D is the diameter of the plates and L the
height of the cell reached Ra ¼ 1012 using 1.6 Billion points with
a total cost of 2 Million CPU hours [27]. DNS in other geometries
have been proposed, such as homogeneous RB, where the flow is
fully periodic and a background temperature gradient is imposed.
This geometry is easy to simulate [28], but presents exponentially
growing solutions and does not have a boundary layer, thus not
showing any transition [29]. Axially homogeneous RB, where the
two plates of the cylinder are removed, and the sidewalls kept
and a background temperature gradient is imposed to drive the
flow has also been simulated [30]. This system does not have
boundary layers on the plates and does not show the transition.
Therefore, it seems necessary to keep both horizontal plates, hav-
ing at least one wall-bounded direction. The simplest geometry is
a parallelepiped box, periodic in both wall-parallel directions,
which we will call ‘‘rectangular’’ RB for simplicity. Rectangular
RB is receiving more attention recently [31–34], due to possibility
to reach higher Ra as compared to more complex geometries. It is
additionally the geometry that is closest to natural applications,
where there are commonly no sidewalls.

For TC, we have one naturally periodic dimension, the azi-
muthal extent. The axial extent can be chosen to be either bounded
by end-plates, like in experiments, or to be periodic. Axial end-
plates have been shown to cause undesired transitions to turbu-
lence if TC is in the linearly stable regime [35], or to not consider-
ably affect the flow if TC is in the unstable regime [36]. Large Re
DNS of TC focus on axially periodic TC, bounding the flow only in
the radial direction [37,22]. Therefore, the choice of having a single
wall-bounded direction for DNS of both TC and RB seems justified.

3. Numerical scheme

The code solves the Navier–Stokes equations with an additional
equation for temperature in three-dimensional coordinates, either
Cartesian or cylindrical. For brevity, we will focus on the RB
Cartesian problem, although all concepts can be directly translated
to TC in cylindrical coordinates system by substituting the vertical
direction for the radial direction, and the two horizontal directions
by the axial and azimuthal directions.

The non-dimensional Navier–Stokes equations with the
Boussinesq approximation for RB read:

r � u ¼ 0; ð1Þ

@u
@t
þ u � ru ¼ �rpþ

ffiffiffiffiffiffi
Pr
Ra

r
r2uþ hex; ð2Þ

@h
@t
þ u � rh ¼

ffiffiffiffiffiffiffiffiffiffi
1

PrRa

r
r2h; ð3Þ

where u is the non-dimensional velocity, p the non-dimensional
pressure, h the non-dimensional temperature and t the non-dimen-
sional time. For non-dimensionalization, the temperature scale is
the temperature difference between both plates D, the length scale

Fig. 1. Left: RB flow for Ra ¼ 108; Pr ¼ 1 and C ¼ 2 in Cartesian coordinates. The
horizontal directions are periodic and the plates are subjected to a no-slip and
isothermal boundary condition. Red/yellow indicates hot fluid, while (light) blue
indicates cold fluid. The small heat carrying structures known as thermal plumes as
well as a large scale circulation can be seen in the visualization, highlighting the
scale separation in the flow. Right: TC flow with an inner cylinder Reynolds number
Re ¼ 105, a stationary outer cylinder, and a radius ratio g ¼ ri=ro ¼ 0:714. Green
fluid has a high angular velocity while blue fluid has a low angular velocity. The
smallness of the structures responsible for torque transport, and thus the need for
fine meshes, can be appreciated clearly. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
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