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a b s t r a c t

The coupling of physically-based models for surface and subsurface water flows is a recent concern. The
study of their interactions is important both for water resource management and environmental studies.
However, despite constant innovation, physically-based simulations of water flows are still time consum-
ing. That is especially problematic for large and/or long-term studies, or to test a large range of
parametrizations with an adjoint model. As the current trend in computing sciences is to increase the
computational power with additional computational units, new model developments are expected to
scale efficiently on parallel infrastructures. This paper describes a coupled surface–subsurface flow model
that combines implicit and explicit time discretizations for the surface and subsurface dynamics, respec-
tively. Despite that the surface flow has a faster dynamics than the subsurface flow, we are able to use a
unique nearly-optimal time step for each submodel, hence improving the resources use. The surface
model is discretized with an implicit control volume finite element method while the subsurface model
is solved by means of an explicit discontinuous Galerkin finite element method. The surface and subsur-
face models are coupled by weakly imposing the continuity of water pressure. By imposing a threshold on
the influence coefficients of the control volume finite element method, we can prevent the occurrence of
unphysical fluxes in anisotropic elements. The proposed coupling is shown to produce results similar to
state-of-the-art models for four different test cases while achieving better strong and weak scalings on up
to 192 processors.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The anthropogenic impact on the environment intensifies con-
tinuously with the expansion of the population and the develop-
ment of its standard of living. To study how human activities
influence its surrounding environment, it is important to fully
understand the biogeochemical exchanges across the biosphere.
Such exchanges are mainly driven by surface and subsurface water
flows, which are difficult to predict without appropriate tools.
Numerical models are increasingly used for this purpose.

Physically-based models are competing with statistically-based
models. The formers are based on complex mathematical equa-
tions that can be difficult to parametrize [1] but with the added
value of an understanding of the underlying processes. The laters,
based on simple generic formulas, can provide an easy and precise
fit with observations data but lack of flexibility when a change

occurs in the system [2]. It is possible to mix both approaches with
an uncertainty analysis to assess the variability of the results [3].
The main sources of uncertainty of physically-based models are
the physical model hypotheses, the mathematical approximations,
the numerical discretization, the heterogeneity and variability of
the parameters, and the calibration of non-linear models with
uncertain measures.

In a physically-based model of the terrestrial water cycle, the
processes are usually modeled by means of the shallow water
equations for the surface flows and the Richards’ equation for the
subsurface flows. The shallow water equations are a convenient
2D approximation of the full 3D Navier–Stokes equations when
the water height is small, which is the case for surface flows. It
can be complemented by additional 1D equations for rivers and
channels to handle the jump in the physical process scales. The
Richards’ equation approximates the soil as a porous medium with
highly non-linear parameters. It assumes an isothermal and lami-
nar flow with no chemical gradients or inertial forces and water
as the unique fluid phase, hence neglecting the air component
[1]. It can be complexified by adding hysteresis, fractures, multiple
phases or macropores, although those extensions are difficult to
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spatialize and parametrize. Since the physical complexity of the
shallow water equations goes beyond what is required for sur-
face–subsurface flow interactions, simpler models are generally
used. The most popular ones are the non-inertia or diffusive wave
model and the kinetic wave model. Some simplified approaches
based on the kinetic wave equation are going further in the
approximations, simulating the surface water via a tree-structured
network of water reservoirs, following the topographical slopes [4].
While being fast, this method is based on strong underlying
hypothesis and is hence inappropriate for natural reservoirs.
Among the many existing approaches [5–7], a state-of-the art
method to discretize the non-inertia equation is the control vol-
ume finite element (CVFE) method, also called the influence coeffi-
cient method [8–12]. This method applies upwind fluxes between
the nodes of a mesh element. Its main advantage over the classical
continuous Galerkin formulation is to avoid the issues related to
zero or negative water depths. As the non-inertia equation is
nearly elliptic when the water height becomes significant, an
implicit time integration scheme is recommended.

The numerical discretization of the Richards’ equation has been
extensively studied, as it presents various numerical difficulties
such as unphysical oscillations, mass conservation errors or a lack
of robustness. These issues can be partly circumvented by care-
fully selecting the non-linear solver [13,14] as well as the space
discretization [9,15,16]. Most Richards’ equation models rely on
implicit time integration schemes and hence present convergence
issues [17] or sub-optimal scaling on parallel infrastructures [18–
23]. The time step of implicit time integration schemes is unre-
stricted for simple diffusion equations, but the non-linearities of
the Richards’ equation put an upper limit to it [17]. Recently, De
Maet et al. [24] have proposed a model using an explicit time inte-
gration scheme and a discontinuous Galerkin (DG) finite element
(FE) spatial discretization. Such an approach achieves an optimal
strong scaling as it does not require linear or non-linear solvers
and hence avoids the associated convergence issues. It relies on
the use of slope limiters to increase the scheme robustness and
a special DG interface term that allows physical discontinuities
in the water content at the elements interface. The interface
between two different soils is precisely represented by the DG
FE approximation, therefore no mixing between the different
properties is necessary as it is the case in continuous Galerkin
FE models. A detailed review of Richards’ equation models can
be found in [16].

In the last decade, the coupling of the shallow water equations
and the Richards’ equation has been an increasingly active domain
of research (see for instance [25] or [26] for an overview). The com-
plexity of studies in this field are mostly due to the fact that surface
and subsurface interactions are difficult to measure. Another issue
is the difficulty to model water fluxes that often exhibit a large spa-
tial and temporal variability. Indeed, processes occurring at small
spatial scales, like river flows, coexist with processes occurring at
large spatial scales, like groundwater flows. Similarly, slow pro-
cesses like the dynamics of the vadose zone coexist with rapid pro-
cesses like surface runoff.

In a continuous world, when surface water is present, the most
physically consistent coupling is to match the hydrostatic pressure
of the surface flow with the pressure head of the subsurface flow at
the top of the soil layer [18,12]. However, a pressure continuity
(PC) coupling strategy would require the soil to be discretized up
to the scale of the smallest water fluxes between surface and sub-
surface, which is rarely feasible in practice because of the associ-
ated computational cost. Additionally, the small features of the
surface linked to those specific fluxes, such as the microtopogra-
phy, the surface soil compression and vegetation cover, are often
very difficult to estimate. Eventually, such a coupling strategy

requires the surface and subsurface models to be connected in
one non-linear solver step. The solution is then provided either
by iterative coupling methods, which require multiple iterations
per time step, or by an implicit time integration scheme, which
produces a non-linear system that is often difficult to solve and
scales poorly on parallel architectures. Another coupling is the
first-order exchange coefficient (FOEC) coupling for which the
pressure continuity is weakly imposed [9,10,12]. The FOEC cou-
pling allows the surface and subsurface to be solved separately
and it can assume additional sub-scale physics at interfaces. It con-
verges towards the PC coupling when the coefficient tends towards
infinity. With an appropriate choice of coefficient it can produce
results very close to the PC coupling with enhanced model perfor-
mances [27,28].

Although the research on coupled surface–subsurface models is
well developed, none of the current models achieve an optimal
scaling on parallel architectures. For Richards’ equation, the paral-
lel efficiency (defined as the fraction of available computational
resources fully-used) of a model like PARSWMS is of 75% but it
can decrease to 29% in some cases [20]. For the coupled model
PARFLOW, the efficiency varies between 40% and 72% [18]. As a
general rule of the thumb, performances decrease with the number
of computational units and increase with the number of degrees of
freedom allocated to each computational unit. This is mainly due
to the complexity of the global system solution, which requires
many communications to exchange information between subdo-
mains. That amount of communications limits the parallel effi-
ciency, especially when a large number of nodes is involved.
Those performances are likely to keep decreasing in the future with
the use of newer technologies. Indeed, today new computers
increase their power by adding more computational units. That
implies a change of paradigm for computational code development
as individual computing units are no longer increasing in power.
Instead, the number of computing units increases. To use all capa-
bilities of future devices, adapted algorithms have therefore to be
developed to achieve efficient parallel codes.

In this paper, we present a coupled surface–subsurface flow
model that combines an implicit model for the non-inertia shallow
water equation and an explicit model for the Richards’ equation
[24]. Such an approach allows us to use the same time step for both
models, as the slow dynamics of the groundwater requires an
explicit time step close to the implicit time step required for con-
vergence of the surface flow non-linear solver. Despite using an
implicit scheme for the surface model, the overall scaling is still
nearly optimal as the subsurface model generally needs the largest
part of the computational resources. The FE method has been
selected mostly for its ability to solve the model equations on
unstructured meshes, which are well suited to complex geometries
such as real catchments. Its CVFE declination for surface flow is
close to a finite volume method, increasing first the robustness
and then the scheme convergence. Its DG FE declination for subsur-
face flow allows for physical discontinuities of the water content
and for the use of limiters to also increase the scheme robustness.
As both the non-inertia and the Richards equations are strongly
non-linear, robustness is often favored over precision, which
would be achieved for instance by a higher order spatial discretiza-
tion. The use of similar spatial discretizations for the surface and
the subsurface models allows an easier coupling, as each surface
element has a unique corresponding subsurface element face. We
introduce a flexible coupling approach that lies between an exact
surface–subsurface pressure coupling, and the FOEC formulation.
This hybrid coupling comes together with the DG FE method when
using its Dirichlet boundary condition. It has the advantages to be
easier to solve than a direct coupling, as it is less stringent, to con-
verge towards the pressure continuity coupling after a transitory
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