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a b s t r a c t

Computational errors in the direct simulation Monte Carlo method can be categorized into four types;
decomposition (or discretization), statistical, machine, and boundary condition errors. They arise due
to variety of reasons including decoupling of movement and collision phases into two separate steps,
finiteness of molecule numbers and domain cell-size, existence of statistical fluctuations and uncertainty,
using machines to solve physical problems numerically, computational implementation of boundary
conditions of approximate nature, and, finally, assumptions and simplifications adopted in the
inter-molecular collision models. In this study, a verification method based on the physical laws of con-
servation, which are an exact consequence of the Boltzmann equation, is introduced in order to quantify
the errors of the DSMC method. A convergence history according to the new verification method is then
presented that can illustrate the effects of all type of errors during the simulation run. Convergence
analysis indicates that the DSMC method can satisfy the conservation laws with an acceptable level of
precision for the flow problems studied. Finally, it is shown that the overall deviation from conservation
laws increases with decreasing sample size value and number of particles, and with increasing length of
cells and time-step interval size.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The kinetic Boltzmann equation is considered the foundation
for theoretical studies of rarefied gas flows. However, solving the
Boltzmann equation directly in phase space is not an easy task
because of the complexity and non-linearity of the collisional term
[1]. For this reason, analytical study of the equation has been lim-
ited to simple flows. As an alternative, the direct simulation Monte
Carlo (DSMC) was introduced by Bird to simulate directly the
molecular behavior of non-equilibrium gas flows [2–4]. In the
DSMC method, a large number of particles are represented by
one simulated particle so that the cost of the DSMC method is
considerably lower than the molecular dynamics simulation of
particles. Owing to its computational simplicity and accuracy, the
DSMC method is now being used in various applications: not only
for traditional rarefied hypersonic gas flows, but also for micro-
scale gases, material processing, acoustic agglomeration processes,
and gaseous mixing [5–10].

Generally, computational errors in the DSMC method can be
categorized into four types; decomposition (or discretization),

statistical, machine, and boundary condition errors. The four types
of error and associated computational parameters are depicted in
Fig. 1. The decomposition error arises from decoupling of the
motion and collision phases into two segregated steps in the
DSMC method. The statistical error is generated due to the sta-
tistical nature of the DSMC method. The machine error, so-called
‘round-off-error,’ is inevitable in any numerical method.
However, the machine error can easily be minimized using 64-bit
data type variables [11].

In the past, much effort has been devoted to the analysis of
decomposition and statistical errors in order to enhance the accu-
racy of the DSMC method. The decomposition error—the most
important type—is basically a function of three computational
parameters: time-step (Dt), cell-size (Dx), and the number of par-
ticles (N) [3]. As Wagner [12] proved theoretically, the DSMC solu-
tion will converge to the solution of Boltzmann equation of a gas
undergoing binary collisions between gas particles, if the value of
these parameters are chosen properly (and when no wall surface
boundary condition is involved in the simulation). In passing it
must be noted that the Boltzmann theory has not been fully
worked out for modifying the collision term that should correctly
reflect the molecular collision with the wall surface atoms. This—
subtle, but often neglected—point has already been noticed by
various previous studies like Cercignani [13] and Villani [14], in
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which it was stated: ‘‘These conservation laws should hold true when
there are no boundaries. In presence of boundaries, conservation laws
may be violated: momentum is not preserved by specular reflection,
neither is energy if the gas is in interaction with a wall kept at a fixed
temperature.’’ Thus, the DSMC solution of gaseous flow problems
(with no wall surface boundary conditions) can be considered a
statistical solution of the Boltzmann equation when infinite
numbers of particles are used, and when the values of time-step
and cell-size approach zero. Nevertheless, the values of time-step
and cell-size cannot be taken as infinitesimally small in reality,
due to limitation of numerical computation. Consequently, the
decomposition error will always exist and influence the accuracy
of the DSMC method. Bird [3] presented two conditions that the
time-step value must be a fraction of the mean collision time and
the cell-size value should be smaller than the mean free path. He also
suggested that the number of particles per cell should be greater
than 20. Later, Meiburg [15] showed that these parameters need
to be examined more carefully in order to yield accurate results.

Many studies have been also conducted to investigate the
effects of computational parameters on decomposition error, and
to quantify the amount of error associated with them. For example,
Alexander et al. [16] studied a one-dimensional stationary prob-
lem, in the limit of infinite number of particles and vanishing
time-step value, in order to analyze the role of cell-size on decom-
position error. They found that the error comes from the collision
pair selection division where particle partners are selected from
any place throughout the collision cell. Hadjiconstantinou [17]
derived an explicit expression for describing the influence of
time-step value on the decomposition error. Garcia and Wagner
[18] compared the measured transport coefficients by DSMC with
the results obtained from the Green–Kubo theory. They found that
the time-step error is closely connected to re-collision phenomena.
Rader et al. [19] compared the value of bulk thermal conductivity
calculated by the DSMC simulation with results of the Chapman–
Enskog theory. The difference between the DSMC and the theoreti-
cal result was found less than 0.2% at a given fine value of
computational parameters. Interestingly, they also reported that
the convergence behavior of error becomes much more compli-
cated when all three parameters are considered simultaneously.
Rader et al. [11] also studied the convergence behavior as function
of temperature and heat flux in various configurations of the DSMC
algorithms. They found that the computational parameters can
affect the accuracy of the high order moment properties (e.g., heat

flux), more than the first order moment, conserved, properties (e.g.,
temperature).

The DSMC method utilizes stochastic numerical procedures;
hence, it inherits the statistical features of probabilistic methods
such as random fluctuation and statistical uncertainty. Moreover,
the probability sampling process is added to filter out statistical
uncertainty and to estimate the mean value of the estimators.
The statistical error can be, in general, reduced by increasing the
sample size. However, the statistical uncertainty will not vanish
completely because of the finite sample size in the DSMC process.
The sample size is basically a function of number of particles and
sample steps. Therefore, the magnitude of statistical error is inver-
sely proportional to the square root of the number of particles and
the sample steps [3,20].

Recently, there have been several studies on the analysis of sta-
tistical error in the DSMC method. Mansour et al. [21] estimated
the amount of statistical error for temperature variable by con-
sidering hydrodynamic fluctuations in dilute gas. Chen and Boyd
[20] analyzed the effect of the number of particles, and the number
of sample steps on the statistical error. Hadjiconstantinou et al.
[22] also studied the behavior of statistical fluctuations utilizing
equilibrium statistical mechanics. They derived a mathematical
expression of statistical error for hydrodynamic variables in order
to predict the required number of sample steps.

In all previous studies, however, just one type of error (i.e.,
either decomposition or statistical error) was considered in the
analysis while other types of error were neglected by assuming
given values for relevant parameters. Moreover, only limited quan-
tities (e.g., transport coefficients and temperature) in simple situa-
tions were considered, even though all hydrodynamic variables
(e.g., density, velocity, shear stress) are required for full under-
standing of the behavior of errors. In the present work, in order
to overcome these shortcomings, a new verification method based
on the exact physical laws of conservation—mass, linear momen-
tum, and total energy—is introduced. To the best knowledge of the
authors, no verification method and consequent convergence analysis
of DSMC based on the physical laws of conservation have been
reported in the literature. It must be reiterated that the physical
laws of conservation is an exact consequence of the Boltzmann
equation owing to the property of collisional invariances of mass,
momentum, and total energy. Therefore, all the computational
methods intended to solve the Boltzmann equation accurately
must satisfy in principle the laws of conservation as well.

Fig. 1. Types of errors in the DSMC simulation.
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