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a b s t r a c t

In this paper, an implicit dual-time stepping scheme based on the finite volume method in spherical
coordinates with a six-component grid system is developed to model the steady state solar wind. By add-
ing a pseudo-time derivative to the magnetohydrodynamics equations for the solar wind plasma, the
governing equations are solved implicitly at each physical time step by advancing in pseudo time. As a
validation, ambient solar wind for Carrington rotation 2048 has been studied. Numerical tests with dif-
ferent Courant factors show its capability of producing structured solar wind and that the physical time
step can be enlarged to be one hundred times that of the original one. Our numerical results have demon-
strated overall good agreements with the observations.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, numerical simulations of the solar
wind plasma flow have evolved from a topic only addressed in
basic research toward a promising tool used for space weather pre-
diction. Today’s maturation of computational magnetohydrody-
namic (MHD) dynamics has enabled us to numerically capture
the basic structures of the solar wind plasma flow and transient
phenomena such as the solar wind background and coronal mass
ejections (CMEs) [1]. Of course, besides the numerical aspect,
numerical space weather modeling depends heavily on the under-
standing of the fundamental physics processes, such as the coronal
heating/solar wind acceleration, initiation of solar eruptions like
CMEs, which will benefit from further theoretical investigation,
and spacecraft observation. This rapid development of numerical
space weather modeling can be attributed to both the achievement
of efficient solution algorithms and the continuous increase in
available computational power. With today’s level of maturity in
numerical algorithms, it is tempting to assume that further pro-
gress in the applicability of numerical methods may be guaranteed
by solely relying on the sustained development of computer tech-
nology. However, since the relevant problem size will continue to
increase as fast as available hardware permits, a number of severe
challenges in the development of numerical methods for solar
wind plasma flow simulation remain. Globally, without going into
detail, these challenges may be summarized by the terms

efficiency, robustness, and accuracy, as usually met in other com-
putational fields [2,3].

The MHD description governs the large-scale dynamics of solar
wind plasmas. Mathematically, ideal MHDs form a hyperbolic par-
tial differential equation (PDE) system, in which seven waves
appear, labeled as entropy, forward and backward slow, forward
and backward Alfvén, and forward and backward fast families,
which all behave anisotropic. The associated seven wave speeds
are the local velocity, v, and the sets are v � vSlow; v � vAlfven;

v � vFast, where vSlow denotes slow magnetoacoustic speeds, while
vFast indicates fast. Together with the Alfvén speed, vAlfven, they are
ordered since vSlow 6 vAlfven 6 vFast. Currently, many solar-
terrestrial physics phenomena that require the solution of a hyper-
bolic system of MHD equations involve vastly different physical
timescales and spatial scales. With respect to efficiency in the
numerical modeling of solar-terrestrial physics phenomena, one
of the major breakthroughs in numerical methods for MHD sim-
ulations was the introduction of adaptive mesh refinement [4–7],
and for the solution of the inviscid equations, numerical methods
may now be considered as fairly effective. However, we are still
frustrated by the inadequacy of today’s methods to efficiently take
into account the stiffness of the discrete system of equations. For
a stiffness discussion in fluid dynamics, we can refer to [2,8] and
references therein. For MHD equations, the same arguments hold.
Discrete stiffness can generally result from distinct sources due to
the use of a scalar time step, highly stretched computational
meshes, and/or other physics such as dissipative/heating processes
in the form of source terms. The scalar time step can fail to cope with
the disparity in the propagation speeds of convective and
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characteristic wave modes and the highly stretched computational
meshes can be required for economical resolution of the spherical
shell computational domain from solar corona to interplanetary
space. The discrete stiffness, provoked by the highly stretched
computational meshes, can be enhanced with the increase of the
corresponding high cell aspect ratios by several orders of magnitude
in large portions of the computational domain which results in
severe convergence problems and very high computation times,
particularly in solar wind simulation studies [3].

In general, the MHD equations of the solar wind plasma involve
a wide separation in timescales. The slow wave and Alfvén wave
only propagate in the direction parallel to the background
magnetic field whereas the propagation of the fast wave is nearly
isotropic [9]. Hence, the spatial resolution requirements perpen-
dicular to the magnetic field are much more severe than those par-
allel to the magnetic field, making the Courant–Friedrichs–Lewy
(CFL) condition associated with the fast wave much more
restrictive than that associated with the others; typically by two
or more orders of magnitude. Since the fast wave is the only one
that compresses the magnetic field, the fast wave sets the maxi-
mum allowable time step when using an explicit time advance. It
is generally believed that when the MHD equations are used to
study plasma phenomena occurring on time scales as short as
the transit time of a fast MHD wave, an implicit scheme removes
the numerically imposed time-step constraint allowing much lar-
ger time steps [9,10]. Besides implicit time integration, the use of
dual time stepping, allows, to some extent, the physical time step
to not be limited by the corresponding values in the smallest cell
and to be selected based on the numerical accuracy criterion [2].
The dual time step, which does not modify the original transient
evolution of the governing equation, adds a pseudo-time derivative
to the governing equation. It uses the pseudo-time steady-state
solution to approach the physical-time solution. A dual time
marching method for MHD-like equations has been used [11–15]
for the simulation of MHD phenomena.

The objective of the present paper is to explore an implicit dual
time-stepping method for 3D MHD studies of ambient solar
wind.The paper is organized as follows. In Section 2, the governing
MHD equations of the solar wind plasma in spherical coordinates
are briefly provided. In Section 3, the hybrid finite volume scheme
of combining the fluid part of the MHD equations and the con-
straint transport method for the magnetic induction part with dual
time stepping are described. In Section 4, the numerical results of
ambient solar wind for Carrington rotation (CR) 2048 with differ-
ent CFL numbers or Courant factors are presented. Finally, conclu-
sions are made.

2. Governing equations

The magnetic field, B ¼ B1 þ B0, is split into the sum of a time-
independent potential magnetic field, B0, and a time-
dependent deviation, B1 [16,17]. Here, B0 is a potential magnetic
field, and in the present paper it is taken as the initial value with
@B0
@t ¼ 0;r � B0 ¼ 0;r� B0 ¼ 0. We note that MHD equations can

be viewed as a combination of fluid dynamics coupled with mag-
netic fields. In the present paper, this physical splitting of the
MHD equations into fluid and magnetic parts [18,19] is
considered in order to design efficient finite volume (FV) schemes
with spatial discretization for the fluid equations and the magnetic
induction equation adopted from [20]. The fluid part of the vector,

U ¼ q;qvr ;qvh;qv/r sin h; e
� �T , reads as follows:
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where e ¼ 1
2 qv2 þ p

c�1þ 1
2 B2

1 corresponds to the modified total

energy density consisting of the kinetic, thermal, and magnetic
energy densities (written in terms of B1). q is the mass density,
v ¼ ðv r; vh;v/Þ are the flow velocities in the frame rotating with
the Sun, p is the thermal pressure, and B ¼ B0 þ B1 denotes the total
magnetic field consisting of the time-independent potential mag-
netic field B0 and its time-dependent derived part, B1. Since B0 is
constant with time, many terms near B0 on the right-hand side van-
ish. t and r are time and position vectors originating at the center of
the Sun. l ¼ 4� 10�7p is the magnetic permeability of free space,
g ¼ � GMs

r3 r is the solar gravitational force, G ¼ 6:673� 10�11 m3

s�2 kg�1 is the gravitational constant, Ms ¼ 1:99� 1030 kg is the
solar mass, and jXj ¼ 2p=26:3 rad day�1 is the solar angular speed.
In our code, we allow the ratio of specific heats, c, to vary from 1.05
to 1.5 along the heliocentric distance, r, according to [17], that is,
c ¼ 1:05 for r=Rs 6 5; c ¼ 1:05þ 0:03ðr=Rs � 5Þ for 5 < r=Rs 6 20,
and c ¼ 1:5 for r=Rs > 20.

The source terms, S ¼ ðS1; S2; S3; S4; S5ÞT , are generated from the
polar geometrical factors, the Coriolis, centrifugal, and gravity
forces, and volumetric heating source terms. Explicitly,
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Here, SM and SE stand for the momentum and energy source terms,
which are responsible for the coronal heating and solar wind
acceleration. Following [17], the source terms SM and SE are given
as follows:
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