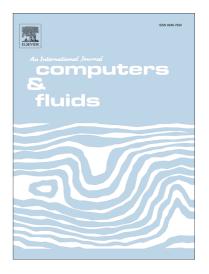
Accepted Manuscript

Simulation of vertical and horizontal magnetic fields effects on non-Newtonian power-law fluids in an internal flow using FDLBM

G.H.R. Kefayati


PII: S0045-7930(15)00046-8

DOI: http://dx.doi.org/10.1016/j.compfluid.2015.02.009

Reference: CAF 2806

To appear in: Computers & Fluids

Received Date: 11 November 2013 Revised Date: 26 January 2015 Accepted Date: 22 February 2015

Please cite this article as: Kefayati, G.H.R., Simulation of vertical and horizontal magnetic fields effects on non-Newtonian power-law fluids in an internal flow using FDLBM, *Computers & Fluids* (2015), doi: http://dx.doi.org/10.1016/j.compfluid.2015.02.009

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

ACCEPTED MANUSCRIPT

Simulation of vertical and horizontal magnetic fields effects on non-

Newtonian power-law fluids in an internal flow using FDLBM

GH.R. Kefayati^{a1}

^aSchool of Computer Science, Engineering and Mathematics, Flinders University, Adelaide, Australia

Abstract

In this paper, the effect of a magnetic field on non-Newtonian fluid flow in a lid-driven cavity has been

analyzed by Finite Difference Lattice Boltzmann Method (FDLBM). It was assumed that the viscosity of

the fluid flow is shear-dependent as the power-law model has been selected for the viscosity of the flow.

This study has been performed for the certain pertinent parameters of Reynolds number (Re=100 - 1000),

Stuart number (N=0-50) and power-law index (n=0.6-1.4) as the magnetic field is applied at different

inclinations of $\gamma=0^{\circ}$ and 90° . Results show that the increment of Reynolds number augments the effect of

magnetic field on the fluid flow. Furthermore, the drop in the power-law indexes increases the influence

of the magnetic field at the inclined angle of $\gamma=90^{\circ}$. The greatest effect of the horizontal magnetic field

 $(\gamma=0^{\circ})$ is observed for the power-law index of n=1.

Keywords: Lid-driven cavity, Non-Newtonian flow, MHD, FDLBM

Introduction

¹ Corresponding author, GPO Box 2100, Adelaide, SA 5001, tel: +61 8 82015678, fax: +61 8 82015678, Email: gholamrezakefayati@gmail.com, gh.rkefayati@yahoo.com (gholamreza.kefayati@flinders.edu.au)

1 | Page

Download English Version:

https://daneshyari.com/en/article/7156997

Download Persian Version:

https://daneshyari.com/article/7156997

<u>Daneshyari.com</u>