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a b s t r a c t

Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the
flow model, the permeability has been considered as a full tensor and is implemented in the numerical
scheme using the multipoint flux approximation within the framework of finite difference method. In
addition, the experimenting pressure field approach is used to obtain the solution of the pressure field,
which makes the matrix of coefficient of the global system easily constructed. A number of numerical
experiments on the flow of two-phase system in two-dimensional porous medium domain are presented.
In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to
density differences between the two phases. Different anisotropy scenarios have been considered. From
the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are
significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-
phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy
orientation on the flow rates and the cross flow index are also discussed in the paper.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase flows in porous media are ubiquitous at all scales
from large scale applications as in oil and gas subsurface reservoirs
to small scale applications as in porous membranes, metallic
foams, filters and many others. No wonder, therefore, the great
deal of motivations among researchers to adapt a framework that
could handle the complexity of the flow of multiphase systems in
porous media. Bearing in mind that researchers are still unable to
fully comprehend to a great satisfaction the flow of multiphase
systems at pore scale, it is, therefore, expected that formulating
the problem of multiphase flows in porous media is even harder.
One notices that even if it might be possible to resolve all the
details down to pore scale, it will still be challenging to consider
large-scale domains, which is a consequence of the enormous
computing power that would be required. This necessitates that
a coarser framework be developed based on the continuum
hypothesis. The mathematical techniques that are used to rigor-
ously develop such framework have to start from the equations
that are applicable at pore scale and scale it up to porous media
continuum scale. Unfortunately, since the governing equations at

the pore scale for multiphase system are complex enough and
there are still unresolved issues (e.g., the moving contact line prob-
lem), it is extremely difficult to rigorously derive upscaled equa-
tions starting with equations defined at pore scale. Moreover,
even if this is possible they are going to be unclosed and a set of
tedious exercises will need to be carried out to suggest closures
[1]. Therefore, there is a great deal of motivation among research-
ers to extend Darcy’s law such that an expression for phase velocity
may be obtained. Researches, in this field, suggest that all the com-
plexities of multiphase flow in porous media are lumped into a sin-
gle multiplicative scalar parameter; namely relative permeability.

In the context of subsurface rock formations, another level of
complexity arise as a result of anisotropy of media properties,
which is due to the geological processes that took place over the
longer geologic time scale. As a consequence, the fluid flow direc-
tion will not be only dependent on the pressure gradient but also
on the principal directions of anisotropy. All the geological features
mentioned above deliver the challenges on the development of
robust reservoir simulators. The standard two-point flux
approximation (TPFA) finite difference method is unfortunately
not capable of handling full-tensor permeability, which limits the
use of this method in many of porous media applications. This
has led to the emergence of what is called the multipoint flux
approximation (MPFA). Two approaches have been introduced to
arrive at the finite difference stencil associated with the MPFA.
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The first was proposed by Avatsmark et al. [2] and Aavatsmark [3]
who introduced MPFA O-method based on the finite volume
method for which the pressure at the mid edges (face centers in
3-D) are used to ensure the continuity of pressure and flux.
There are several other types of MPFA such as MPFA L-method
[4–6], MPFA U-method [7] and MPFA Z-method [8]. In addition,
Edwards and Rogers [9] and Lee et al. [10] introduced the flux-con-
tinuous approach based on the framework of finite difference,
which is equivalent to the work of Aavatsmark et al. [2] and
Aavatsmark [3]. The second approach of MPFA is based on the
mixed finite element point of view. Wheeler and Yotov [11] proved
that MPFA could be derived from the lowest-order Brezzi–
Douglas–Marini (BDM) mixed finite element through special
quadrature rule. A trapezoidal quadrature rule is employed such
that it allows the local velocity elimination and leads to cell-cen-
tered stencil for the pressure (cell-centered finite difference).
Employing quadrature rules in evaluating integrals alleviates the
needs to care about the specific form of approximating shape func-
tions and instead the values of the functions at nodal points are
used. The resulting algebraic system is symmetric and positive
definite. This approach is so-called multipoint flux mixed finite ele-
ment (MPFMFE). In the last decade, the implementation of MPFA
into single-phase or multiphase flow models for 2-D and 3-D prob-
lems has been deeply discussed [12–16].

As indicated in its name, MPFA requires more point stencil than
TPFA. For example, the divergence operator requires 9-point and
27-point stencil in 2-D and 3-D problems, respectively. This makes
the construction of the matrix of coefficient a difficult task and
prone to errors in terms of coding. Therefore, we apply a newly
developed technique, the so-called experimenting pressure field
approach. This technique generates the matrix of coefficient
automatically within the solver routine. This is, tremendously,
beneficial particularly when there are long expressions of dis-
cretized algebraic equations. This technique has been implemented
successfully in many engineering applications involving anisotropy
of media properties [14–19].

The purpose of this paper is to simulate the flow of multiphase
system in anisotropic porous media by using the MPFA method
combined with the experimenting pressure field approach. In
addition, we are also interested in investigating the effect of grav-
itational force in driving fluid migration in anisotropic porous
media. In this work, numerical experiments for different aniso-
tropy scenarios consider the inflow of a fluid phase that has lower
density than the existing fluid inside the domain. The density dif-
ference between the two phases induces buoyancy-driven upward
flow of the lower density fluid.

This paper consists of five main sections: Section 1 discusses the
background and motivation of the study including the literature
review on the development of MPFA and the scope of this work.
Section 2 presents the governing equations of the two-phase flow
model as well as the effect of gravitational force on the horizontal
flux. Section 3 describes the fundamental concept of the MPFA
method followed by the numerical discretization. Section 4
demonstrates the numerical results of the considered scenarios.
The relation between the anisotropy orientation and the cross flow
index is also discussed. Finally, we conclude the study in the last
section.

2. Modeling equations and workflow of simulation

The governing equations that describe two-phase flow in por-
ous media include the mass conservation equation and Darcy’s
law. The mass conservation equation describes the balance
between the inflow and outflow of mass through a specified
domain. The balance principle of physical quantities in the form

of partial differential equations is a consequence of adapting the
continuum hypothesis in porous media [20–22]. Meanwhile,
Darcy’s law describes the relationship among the total volumetric
flow rate of each phase with the potential (pressure) gradient [23].
The mass conservation equation is described by

@ /qaSað Þ
@t

þr � qauað Þ ¼ qa; a ¼ w;n ð1Þ

Here, /;qa; Sa; qa, and u are the porosity, the fluid density (kg/m3),
the saturation, the sources/sinks (kg/m3s), and the flux (m/s) of
a-phase, respectively. The index of w refers to the wetting phase
and n for the non-wetting phase. Darcy’s law for the flux of each
phase is given by

ua ¼ �
kra

la
K rpa � qagð Þ; a ¼ w;n ð2Þ

where la and pa are the fluid viscosity (Pa � s) and the pressure (Pa)
of a-phase, respectively, g is the gravitational acceleration (m/s2), K
is the absolute permeability tensor (m2), and kra is the relative
permeability. The permeability tensor, K, is given by

K ¼
Kxx Kxy

Kyx Kyy

� �
ð3Þ

The full-tensor permeability is assumed to be symmetric ðKxy ¼ KyxÞ
and positive definite ðKxxKyy > K2

xyÞ. The relative permeability,
which is a function of phase saturation, describes how a fluid phase
interferes the flow behavior of another fluid phase and vice versa
[24]. There are several models for the relative permeability such
as Brooks–Corey [25] and van Genuchten [26]. In this work, we
use the relative permeability model of Brooks–Corey, which may
be written in the form:

krw Sað Þ ¼ 1� Sað Þ
2þ3k

k

krn Sað Þ ¼ S2
a 1� 1� Sað Þ

2þk
k

h i ð4Þ

where k is the pore size distribution index and its values vary
depending on the heterogeneity of the reservoir rock. The greater
the value of k, the more homogeneous the reservoir rock will be.
The typical values for k range between 0.2 and 3. The Brooks–
Corey’s model has been used in many two-phase flow studies
[27–30].

The governing equations as given above are coupled and there
is no explicit equation for the pressure. In this work, the Implicit
Pressure-Explicit Saturation (IMPES) scheme is adapted in which
an equation for the pressure is obtained as follows: let’s define
the total flux as the summation of the wetting phase flux and the
non-wetting phase flux,

ut ¼ uw þ un ð5Þ

Rewriting the total flux in (5) based on the Darcy velocity for each
phase in (2) and neglecting capillarity, one obtains

Fig. 1. Two-point flux (a) and the multipoint flux (b) approximations.
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