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We propose a method for quantifying the effective numerical dissipation rate and effective numerical viscos-
ity in Computational Fluid Dynamics (CFD) simulations. Different from previous approaches that were
formulated in spectral space, the proposed method is developed in a physical-space representation
and allows for determining numerical dissipation rates and viscosities locally, that is, at the individual
cell level, or for arbitrary subdomains of the computational domain. The method is self-contained and
uses only the results produced by the Navier-Stokes solver being investigated. As no further information
is required, it is suitable for a straightforward quantification of numerical dissipation as a post-processing
step. We demonstrate the method’s capabilities on the example of implicit large-eddy simulations of a
three-dimensional Taylor-Green vortex flow, serving as a test flow going through laminar, transitional,
and turbulent stages of time evolution. For validation, we compare results for the effective numerical
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dissipation rate with exact reference data we obtained with an accurate, spectral-space approach.
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1. Introduction

Results of numerical simulations of fluid flows are always con-
taminated by truncation errors introduced by the discretization of
governing differential equations. Truncation errors are only
negligible if all physical scales are well resolved by the given mesh
and time-step size. For lower temporal or spatial resolution, how-
ever, truncation errors affect the simulation results and can be of
similar magnitude as physical effects. This situation is most fre-
quently encountered in numerical simulations of turbulent flows
at high Reynolds numbers. Simulating such flows usually requires
modeling contributions of unresolved scales by various turbulence
modeling procedures, leading to Reynolds-averaged Navier-Stokes
(RANS) simulations or large-eddy simulations (LES).

In recent years, it has been recognized that the truncation errors
may even act as a substitute for modelling of non-resolved scales.
In turbulence, this approach is known as monotonically integrated
LES (MILES) or implicit LES (ILES), and was originally proposed by
Boris et al. [1] and reviewed more recently in a monograph edited
by Grinstein et al. [2]. With ILES, the Navier-Stokes equations are
solved numerically on a coarse LES mesh without explicit SGS
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models. Often one relies on nonlinearly stable methods, such as
total variation diminishing (TVD), flux-corrected-transport (FCT)
and flux-limited and sign-preserving schemes [3-5], originally
developed to control numerical oscillations in configurations
involving steep gradients or discontinuities. In the stabilized spec-
tral LES [6] the numerical stability is not provided by the trunca-
tion error of the numerical discretization (which is exponentially
small for a spectral method [7]) but by the spectral filter that
strongly attenuates the small resolved scales if applied at each
time step. In the same spirit, Bogey and Bailly [8] use an explicit fil-
ter applied every few time steps as a substitute for a SGS model in
LES of a turbulent jet flow. Such methodologies are justified on a
basis of the practical observation that truncation errors in non-
oscillatory methods, as well as explicit filtering, introduce numeri-
cal dissipation, and that they effectively act as SGS models. For

instance, [9] report the development of the k>/? inertial subrange
in numerical simulations of isotropic turbulence performed using
the piecewise parabolic method (PPM) implemented in an Euler
solver. This is a nominally inviscid case where the kinetic energy
should be conserved but in the simulations it decays in agreement
with Navier-Stokes dynamics because of numerical dissipation.
Despite a wealth of positive results it should be recognized that
the presence of numerical dissipation or explicit filtering does
not guarantee physically correct dynamics of the resolved
scales. For example, Garnier et al. [10] analyzed several different
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shock-capturing Euler schemes applied to decaying isotropic tur-
bulence and the conclusions were less favorable for ILES. While it
was possible to obtain the inertial subrange, other results, such
as probability densities of velocity derivatives and pressure,
showed characteristics of low Reynolds number flows rather than
what would have been expected from high Reynolds number LES.
This behavior was attributed to the fact that the numerical dissipa-
tion often overwhelms the SGS dissipation computed for the same
field using an explicit SGS model. Similar conclusions were drawn
by Domaradzki and Radhakrishnan [11], who showed that the
results obtained with the MPDATA method [12] for rotating and
non-rotating turbulence were sensitive to the time-step size, and
the method failed to produce theoretically expected results for cer-
tain initial conditions, and for rotating turbulence. The current
rather vague definition of SGS modeling capabilities of the wide
range of ILES schemes proposed in literature demands a more
systematic approach to determine the effective dissipation apos-
teriori. Such a tool would allow comparisons of the effective
numerical dissipation with the physical dissipation provided by
resolved viscous stresses, and by explicit SGS models. Analytical
information about the truncation errors can be obtained from the
modified equation analysis but this approach is not feasible for
multidimensional, nonlinear transport equations. The first
aposteriori method for computing integral numerical dissipation
has been proposed by Domaradzki et al. [13]. It is based on com-
paring flow evolutions from the same initial condition using two
different discretization schemes, a scheme with finite numerical
dissipation and a spectral code with negligible numerical dissipa-
tion. The method was used to analyze ILES simulations performed
with the MPDATA approach for freely decaying high Reynolds
number homogeneous turbulence with and without Coriolis forces
Domaradzki and Radhakrishnan [11] and for a spectral multido-
main simulations stabilized by spectral filtering and penalty meth-
ods Diamessis et al. [14]. The procedure computes the effective,

wavenumber-dependent, numerical dissipation rate En,SP(K«, t) and
the corresponding numerical viscosity Vng(k,t) for comparison
with the analytical theories of turbulence. This procedure was
employed by Hickel et al. [15] to develop a specific ILES method
that is consistent with the physical energy transfer in turbulence,
the so-called adaptive local deconvolution method (ALDM). It is
based on a nonlinear discretization scheme which contains several
free deconvolution parameters that allow to control its truncation
error. The free parameters are constrained so that the numerical
viscosity optimally matches the theoretical eddy viscosity
predicted by the analytical theories of turbulence. While the
optimization was performed for isotropic turbulence, the parame-
ters of the scheme, once determined, proved to be valid also for
simulations of other turbulent flows. Another method for estimat-
ing the numerical dissipation in LES was proposed recently by
Zhou et al. [16] and is based on using the energy flux from the
large, resolved scales as the numerical dissipation estimate.

The analysis of Domaradzki et al. [13] was developed in spectral
space (to allow one-to-one comparisons with spectral eddy vis-
cosities obtained from analytical theories of turbulence) and mea-
sures the global (spectral) dissipation rate. Despite being very
accurate, Fourier-space based analysis of the numerical dissipation
has some limitations. Since the computational domain must be
periodic, the method cannot be easily generalized to non-periodic
flows for which a local estimate of physical-space numerical
dissipation is of particular practical interest. Also, using an addi-
tional spectral code for analysis is not always feasible.

The objective of this work is to develop and validate a more
general procedure, free of the limitations listed above, for assessing
the numerical dissipation rate for any given grid-based Navier-
Stokes solver and a wide range of flows. The proposed method is

equally applicable to periodic and non-periodic flows, provides a
numerical-dissipation field, and can be employed as a post-pro-
cessing tool for computational data.

2. Basic equations

The evolution of smooth and continuous fluid flows can be
described by the conservation of mass, momentum and total
energy. For a fluid with constant dynamic viscosity pu=vp as
assumed for this study this set of equations, denoted as the
Navier-Stokes equations (NSE), is
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u, are the components of the velocity vector, p denotes the pres-
sure, T is the temperature and k is the thermal conductivity. For
when v = 0 the second term on the right-hand side of the momen-
tum and total-energy transport equations, Eqgs. (1b) and (1c), vanish
and the system of conservation equations is denoted Euler equa-
tions. The transport of e, can be separated into the transport equa-
tion for internal energy e;,
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The second term on the right hand side of Eq. (4) is the viscous
contribution to the kinetic energy equation. To express the transfer
of kinetic energy by viscous dissipation to the internal energy more
clearly, the viscous contribution may be rewritten as
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The first term on the right hand side of Eq. (5) is the the viscous
work. Thus, the kinetic energy transport equation (for compressible
flows) is:
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Integration of the kinetic-energy transport Eq. (6) over the control
volume V = Ly x L, x L3 leads to its integral form
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and the kinetic and acoustic energy fluxes as well as the viscous
surface work are
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