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a b s t r a c t

Sorting compliant capsules is an interesting research topic. In this paper, a simple bifurcated micro-
channel is used to sort the particles with different rigidities. The behavior of a compliant particle inside
the channel is investigated numerically. The fluid flow and the particle’s deformation are solved by
Lattice Boltzmann Method (LBM) and Lattice Spring Model (LSM), respectively. The fluid and solid solvers
are coupled through interpolated bounce-back scheme. Two benchmark problems are used to validate
our method. One is the motion of a compliant capsule in a channel and the other is the deformation of
a capsule inside a simple shear flow. The results are quantitatively consistent with those in literature.
By taking advantage of the rotating of capsules in shear flow, a simple distinguished bifurcated micro-
channel is proposed to sort capsules with different rigidities. In this micro-channel, the initial offset
and shear stress induce the rotating and lateral migration of the capsule and flux ratio is determined
by the outlet pressures. The competition between the effect of initial offset and flux ratio contributes
to the sorting mechanism. Compared to other micro-channels with different geometrical models, present
one is more convenient and may be more efficient to screen the microcapsule we want.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, researchers are very interested in the deforma-
tion and motion behavior of a capsule enclosed with elastic mem-
brane. A possible reason is that behavior of a capsule immersed in
fluid is similar to that of a Red Blood Cell (RBC) suspended in
plasma. As we know, the RBC plays important role in Oxygen trans-
fer. The RBC is enclosed with lipid bilayer, which would protect the
entity of the cell and afford the ability to deform. The RBC sus-
pended in blood on one hand is driven to flow with the blood, on
the other hand is deforming under the effect of the fluid enclosing
it. Hence, understanding the motion and deformation behavior of
the RBC is important. In blood diseases like cerebral malaria and
sickle cell anemia, the rigidity of RBC would be affected much
[1]. When the RBC goes through the constricted capillary tube, it
may be unable to deform enough and in a certain condition, it
may be destroyed by a little stimulant such as some impurity con-
tained in blood. For the application of capsules, artificial capsules
are often used in the pharmaceutical, cosmetics, and food indus-
tries. They could regulate the release of active substances and fla-
vors. Because of the small size and fragility, measuring the
mechanical properties of the membrane is very difficult.

Research in membrane hydrodynamics has achieved great
success. It leads to numerous membrane constitutive laws. The
simplest law is Hooke’s law restricted to small deformations.
Another is Mooney–Rivlin (MR) law which assumed the membrane
is a very thin sheet [2]. In order to model the large deformations
of RBC, Skalak et al. [3] proposed the Skalak (SK) Law. Some
theoretical studies have been carried out. Barthes-Biesel [4] and
Barthes-Biesel and Rallison [5] applied a regular perturbation to
analyze cases where the deviation from spherical shape of the
capsule is small or large. Barthes-Biesel et al. [6] also compared
the effect of constitutive laws for two dimensional (2D)
membranes. They found that after a continuous elongation, a
capsule with a MR membrane bursts, while a capsule with a SK
membrane would reach a steady state.

However, deformation of a RBC depends on not only the elastic
of the membrane, but also the flow of fluid surrounding the RBC.
The flows in complex geometry are difficult to be analyzed theo-
retically. To study the deformation, usually experimental and
numerical methods are adopted. To investigate the deformation
of a capsule in a simple shear flow, Chang and Olbricht [7] and
Walter et al. [8] designed artificial capsules composed of different
material. However, usually it is difficult to change the rigidity of
the capsule in experiments. With the development of numerical
methods and computers, more researchers carried out relevant
numerical studies [9–17].
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Many numerical methods have been developed to solve both
the deformation of the capsule and fluid flow. For example,
Woolfenden and Blyth [18] used boundary element method to
solve both the solid and fluid parts. Immersed-boundary method
(IBM) is another simple but effective scheme to solve the flow
problem. The IBM is introduced by Peskin [19], and developed by
Feng et al. [20], which is usually used to simulate the moving
boundary problem. In the scheme, the deformation of capsule
and fluid flow are solved separately and the IBM is used to couple
the solutions. For example, MacMeccan et al. [21] and Sui et al. [11]
applied the finite element analysis (FEA) and Lattice Boltzmann
Method (LBM) to solve the dynamics of the membrane and fluid
flow, respectively. The IBM is adopted to couple the FEA and
LBM. This method is able to simulate large numbers of capsules
suspended in fluid efficiently [12]. Sui et al. [9,10] identified vari-
ous types of motion for a capsule freely suspended in simple shear
flow. For an initially spherical capsule, it would exhibit a steady
‘‘tank-treading’’ motion, wherein the capsule deforms into a sta-
tionary shape with a finite inclination with the flow direction
and the membrane would rotate around the interior liquid. Keller
and Skalak [22] analyzed the motion of a viscous ellipsoid and
investigated the effect of viscosity ratio of the inner and outer
fluids. They found the critical viscosity ratio for a capsule translat-
ing from tank-treading motion to tumbling motion. Abkarian et al.
[23] and Skotheim and Secomb [24] found that lowering the shear
rate of the external flow could trigger the transition from succes-
sive swinging mode to the pure tumbling mode. Kessler et al.
[25] concluded a full phase diagram for varying shear rate and vis-
cosity ratio.

For studies of capsules sorting, Alexeev et al. [26–28] came up
with an idea about capsules that are driven by a shear flow going
through compliant substrates or corrugated surfaces. The motion
of capsules can be controlled through changing rigidity of the sub-
strates or corrugated structure. Zhu et al. [29] designed a con-
stricted pillar geometrical model to regulate the motion of
capsule because the velocity of the capsule depends on the rigidity
of the capsule. However, the above sorting methods are not easily
and efficiently applied in engineering. Now, more and more
researchers try to design different mechanism to sort capsules with
different rigidity.

Here, taking advantage of ‘‘tank treading motion’’, we designed
a simple bifurcated micro-channel to sort capsules with different
rigidities. Through setting different pressures on the outlet bound-
aries of the device, we can control which sub-channel the capsules
will enter into. In the literature, there are some studies on capsules’
behavior near the bifurcation. Woolfenden and Blyth [18] con-
ducted a two-dimensional elastic fluid-filled capsule through a
channel with a side branch. The deformation experienced by the
capsule near the junction of main channel and side branch is found
to depend strongly on the branch angle, and the path selection of a
cell at a branch junction can depend crucially on the capsule
deformability [18]. Hyakutake et al. [30] and Barber et al. [31] used
2D bifurcation flow to investigate the blood cell behavior at micro-
vascular bifurcations. They found the fractional particle flux to a
daughter branch is almost similar to the fractional bulk flow to
the same branch in high hematocrit. However, in low hematocrit,
the fractional particle flux against the fractional bulk flow
increases. Hence, in previous relevant studies, no one focused on
sorting capsules using simple bifurcated micro-channel.

To evaluate the performance of the device we designed, we take
a numerical study on the sorting mechanism. Our numerical
method is based on that of Alexeev et al. [26]. Capsule is modeled
as a fluid-filled elastic shell. The Lattice Spring Model (LSM) is used
to solve the deformation of the shell [32–35]. This model is able to
simulate the solid material constructed by isotropic homogeneous
elastic medium [32]. In the model, discrete solid nodes are

connected with linear springs. For the fluid flow, the LBM is used,
which is an efficient solver for Navier–Stokes equations [36–38].
The interpolated bounce-back scheme is used to couple the fluid
flow and deformation of the capsules. However, Omori et al. [14]
has used the numerical test of tension-strain relations and the iso-
tropic tension-area dilation relations for large deformation to
demonstrate that the cross mesh type we used in our paper
exhibits a strain-hardening behavior and strain-softening behav-
ior,respectively. So we set the capsule’s deformation relatively
low ðCa < 0:2Þ in order to model the biological cell membranes
which is local area incompressibility more closely.

In this paper, first the numerical methods about LBM and LSM
are introduced briefly. Then the numerical method is validated
by two benchmark problems. One is the motion of a compliant cap-
sule in a channel and the other is the deformation of a capsule
inside a simple shear flow. Finally, sorting mechanism of capsules
with different rigidity through the bifurcated channel is explored.

2. Method

2.1. Lattice Boltzmann method

In our study, the fluid flow is solved using LBM. In the LBM, the
Bhatnagar–Gross–Krook (BGK) approximation for the collision
term is adopted [36]. In the lattice BGK method, a distribution
function f iðx; tÞ is introduced to implicitly represent all relevant
properties of the fluid. This distribution function satisfies the fol-
lowing lattice Boltzmann equation [36]:

f iðxþ eiDt; t þ DtÞ ¼ f iðx; tÞ �
1
s
ðf iðx; tÞ � f eq

i ðx; tÞÞ; ð1Þ

where f iðx; tÞ is the density distribution function in the discrete
velocity ei direction. f iðx; tÞ is functions of position x and time t. s
is a non-dimensional relaxation time which is related to the kine-
matic viscosity by m ¼ c2

s ðs� 0:5ÞDt. Usually in the LBM code, Eq.
(1) is decomposed into two steps. One is the streaming step:

f iðxþ eiDt; t þ DtÞ ¼ fþi ðx; tÞ; ð2Þ

the other is the collision step:

fþi ðx; tÞ ¼ f iðx; tÞ �
1
s
ðf iðx; tÞ � f eq

i ðx; tÞÞ: ð3Þ

The equilibrium distribution function f eq
i ðx; tÞ can be calculated

as [36]

f eq
i ðx; tÞ ¼ wiq 1þ ei � u

c2
s
þ ðei � uÞ2

2c4
s
� ðuÞ

2

2c2
s

" #
: ð4Þ

In Eqs. (1) and (4), for the two-dimensional nine-velocity
(D2Q9) model, eis are given by [36]

½e0;e1;e2;e3;e4;e5;e6;e7;e8� ¼ c �
0 1 0 �1 0 1 �1 �1 1
0 0 1 0 �1 1 1 �1 �1

� �
:

In Eq. (4) the weighting coefficients wi ¼ 4=9, (i = 0), wi ¼ 1=9,
(i = 1, 2, 3, 4), wi ¼ 1=36, (i = 5, 6, 7, 8). The lattice sound speed in
the LBM [36] is cs ¼ cffiffi

3
p for the D2Q9 model, where c ¼ Dx

Dt is the ratio

of lattice spacing Dx and time step Dt. Here, we define 1 lattice unit
(Dx) as 1 lu, 1 time step (Dt) as 1 ts, and 1 mass unit as 1 mu.

In Eq. (4), q is the density of the fluid, which can be obtained
from the zeroth order moment of f i [36],

q ¼
X

i

f i; ð5Þ

and q0 is used to denote the average density of the fluid. The fluid
velocity can be calculated through the first order moment of f i [36],
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