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a b s t r a c t

An alternative scheme to implement the velocity Dirichlet boundary condition for curved boundary in the
lattice Boltzmann (LB) method is developed. For inclined arbitrarily flat wall, the local second order
boundary method (LSOBM) is proposed initially by Ginzbourg and D’Humières, and we further develop
it to curved boundary, therefore a generalized LSOBM is achieved. In our boundary scheme, the unknown
distribution functions at the boundary nodes are locally derived from the known ones by accessing
the macroscopic physical information prescribed by the Dirichlet boundary conditions. Essentially, the
unknown distribution functions are represented by a linear combination of the known ones, the
corresponding coefficients depend on the macroscopic constraints on the boundary wall, the geometric
information of the boundary nodes and the relaxation parameters. Unlike the previous curved boundary
schemes, in which the boundary nodes are characterized by the intersected lattice links, a local curvilin-
ear coordinate system associating with the curved boundary is adopted in the present scheme, and the
boundary nodes are identified directly by their coordinates. Moreover, the present boundary scheme is
second order accurate, as demonstrated in the theoretical derivations and also validated by two bench-
mark tests, the Taylor–Couette flow in-between rotating cylinders and the flow past an impulsively
started cylinder.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

The lattice Boltzmann (LB) method, a promising alternative
numerical technique to the traditional computational fluid dynam-
ics (CFD), has been greatly developed over the last two decades,
and a great success is achieved in simulating various complex
fluids such as the multiphase flows [1,2], particulate flow [3],
and the microfluidics [4,5]. The implementations of the boundary
conditions have direct effect on the accuracy and numerical stabil-
ity of the LB simulations. Therefore, the boundary scheme is crucial
and becomes an attractive topic in developing LB method [6]. In
the traditional CFD, the boundary conditions are defined with the
macroscopic variables, whereas in the LB method, the primitive
variables are distribution functions at the mesoscopic level, and

no physically based boundary constraints for the distribution func-
tions are provided. Thus, elaborate boundary schemes ought to be
developed to determine the unknown distribution functions at the
boundary nodes in accordance with the macroscopic physical
boundary conditions [7–10].

The bounce back rule, originating from the lattice gas automata,
has advantages in preserving naturally the mass conservation and
implementing easily the programme. Therefore, the bounce back
rule is widely used in simulating flows with especially complicated
geometrics [7,10–12]. However, the standard bounce back rule is
first order accurate, and it exhibits second order accuracy only
when the actual non-slip wall is located off the grid point where
the bounce back collision takes place [7,13,14]. Besides, for a mov-
ing boundary, an additional term representing the momentum
transfer owing to the fluid–wall interaction ought to be introduced
[6,7,13,14]. Unlike the bounce back rule, in which the boundary
nodes locate outside the fluid domain to achieve second order
accuracy, the boundary nodes are on the actual wall position in
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another category of boundary schemes. In Skordos’s scheme [15]
and the velocity boundary condition proposed by Lätt and
Chopard [9], the unknown distribution functions are computed
from the first order Chapman–Enskog (CE) expansion, and the
velocity gradients are approximated by a finite-difference scheme.
In the moment-based boundary scheme proposed by Reis and
Dellar [4], the unknown distribution functions are derived from a
closure relation constructed by the prescribed moments pertaining
to the hydrodynamic quantities, including density, momentum,
and momentum flux, on the boundary wall. Another typical bound-
ary scheme in this category is the extrapolation scheme [11,12],
which originates from the traditional finite difference schemes
and is applicable for various physical boundary conditions.

In dealing with curved boundary, there are two strategies in the
LB method. One is the nonuniform grid using second order
interpolations [16,17], and the geometric integrity is exactly pre-
served [8]. Another strategy is to maintain the regular Cartesian
grid, and special boundary schemes ought to be developed for
representing the curved boundaries. The bounce back rule is
extended to the curved boundary by interpolating the distribution
functions, and the bounce back collision around the intersection of
the lattice link and the boundary wall is reproduced [8,13,18]. The
boundary scheme proposed by Lätt and Chopard [9] is also applied
to the curved boundary by approximating the macroscopic velocity
at the boundary nodes with interpolation along the lattice links
and computing the velocity gradients with finite difference stencils
along the grid lines [18]. Besides, the extrapolation scheme is also
extended to the curved boundaries by Guo et al. [19]. The unknown
distribution functions at the boundary nodes are firstly split into
their equilibrium and non-equilibrium parts. The macroscopic
variables and the non-equilibrium part of the distribution func-
tions are approximated by extrapolation, then, the equilibrium

part are obtained from the approximated macroscopic variables.
Moreover, the boundary-fitting scheme, which is proposed by
Filippova–Hänel [20,21] and further improved by Mei et al. [8,22]
(hereinafter referred to as FH scheme), provides another alterna-
tive for curved boundary treatments. In the FH scheme, the linear
interpolation, involving of the post-collision distribution functions
at the fluid node near the boundary wall and the fictitious equilib-
rium distribution functions at the neighboring solid node, is
adopted to determine the unknown distribution functions at the
boundary nodes. The interpolation coefficient depends on
the extrapolation scheme, which determinate the velocity at the
neighboring solid node. The FH scheme has been applied success-
fully in some practical flow problems, such as the gas particle flow
in filters [20] and oscillations of laminae in viscous fluids [23].

The above-mentioned curved boundary schemes are mostly of
second order accuracy. In 1996, a so-called local second order
boundary method (LSOBM) for the LB FCHC model was proposed
by Ginzbourg and D’Humières [7]. The LSOBM was applied to an
arbitrarily inclined flat wall, and the error term is of third order.
Especially, the distribution functions at the boundary nodes are
derived by the second order CE expansion and the macroscopic
velocity and its first and second order derivatives at the boundary
nodes are obtained from a second order Taylor expansion. Instead
of the finite difference approximation as in Skordos’s scheme [15],
the local known distribution functions are used to compute the
unknown macroscopic variables necessary for the expression of
the distribution function, and therefore, the unknown distribution
functions at the boundary nodes are ultimately expressed as a lin-
ear combination of the known ones at the same nodes. As claimed
by Mei et al. [8], the LSOBM is viewed as the most profound and
rigorous theoretical treatment of the boundary conditions, how-
ever, insufficient attention is devoted to this scheme owing to its

Nomenclature

f a distribution function

f ð0Þa equilibrium distribution function

f ðneqÞ
a non-equilibrium distribution function

s relaxation time
na discrete velocity vector
wa weight coefficient
dx spatial step
dt time step
c lattice speed
cs sound speed
u velocity vector
q density
p pressure
P momentum flux tensor
P stress tensor
s deviatoric stress
e CE expansion parameter
m kinematic viscosity
Ma Mach number
I subsets of indices a
N number of the elements in I
gi covariant basis
ui contravariant velocity components
ui covariant velocity components
ui

; j covariant derivatives of the velocity

Ck
ij Christoffel symbols of the second kind

u0 given velocity on the boundary wall
r; h coordinates of the boundary node

r0 radius of the bound wall
d normal distance r � r0
r1 radius of the inner cylinder
r2 radius of the outer cylinder
b geometric parameters of the Taylor–Couette flow
er ; eh unit basis in the curvilinear coordinate system
Re Reynolds number
�N the L2 norm error of the velocity fields
U inlet velocity
D diameter of the cylinder
T dimensionless time
ux;uy velocity components in the x, y directions
ur ;uh velocity components in the normal, tangent directions
CD total drag coefficient
L=D wakelength
CDp pressure drag component

Superscript
(0) equilibrium
(1) the first order term of the CE expansion
loc known distribution function components
in unknown distribution function components
sol normal projection of the boundary node on the bound-

ary wall
use the selected known distribution function components

for computing the unknown macroscopic variables

Subscript
a direction of the discrete velocity
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