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a b s t r a c t

This paper presents a combined numerical and experimental investigation of dam break induced
free-surface flows in channels with 90 degree bend. These types of flows are best described by the
two-dimensional shallow water equations (SWE) representing the conservations of mass and
horizontal momentums. In this study, the governing equations are solved numerically by means of an
alternating-direction implicit (ADI) finite-difference scheme in a curvilinear coordinate and contravariant
velocity system. This model is tested by simulating for various flow conditions including dam-break
flows onto dry beds in a converging–diverging channel and a channel with 45 degree bend. Good fits
of the present model predictions with published laboratory measurements are achieved. To further the
validation of the model, a series of physical model tests for dam-break flows in a channel with 90 degree
bend were conducted. The predicted time-varying water depths downstream of the dam face are shown
to have a fairly good agreement with recorded data from model tests. The present ADI solver is found to
be capable of capturing the formation and movement of steep wave fronts.

� 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Throughout history, people have been impacted by flooding
due to natural and man-made causes such as dam failures. The
potential damage caused by flooding or catastrophic failure of
a dam has always been a major concern of the public and
engineers alike. This concern has resulted in extensive research
on laboratory measurements and numerical simulations of
overland flows, especially dam break induced free-surface flows.
The ability of modeling these types of flows is of great
importance because it enables forecasting the areas may be
impacted by flooding from a rainfall event or in the case of a
dam failure. The potential impact on a town downstream can
be evaluated.

The above mentioned overland flows, including dam-break
flows, can be conveniently modeled by solving the two-dimen-
sional shallow water equations (SWE), which are derived from
the vertical integration of the Navier–Stokes equations with the
use of bottom and water surface boundary conditions. In order to
numerically describe those complex types of flows, a model or
scheme must be developed, which will perform the simulations

while providing good computational results. Usually in flooding
simulations, it is important that the model is able to model an
advancing wave front over a wet or dry bed. Researchers and
modelers frequently performed dam-break simulations on various
types of channels using methods among finite-difference (FD),
finite-volume (FV), or finite-element (FE). The other considerations
would be the selections of the coordinate system and formation of
computational grids.

The finite volume (FV) method, which solves the integral form
of the SWE on domains with either structured or unstructured
grids, has been used to handle the dam-break problems with
downstream propagating flood waves. Zoppou and Roberts [36]
compared several explicit schemes for one-dimensional dam break
problems. Formulations of upwind type FV scheme to solve a
Riemann problem at the interfaces between two neighboring ele-
ments were presented by Godunov [15]. With the concept of solv-
ing the Riemann problem more effectively, Roe [23] introduced
approximate Riemann solvers to model flows with shock wave
front. Zhao et al. [35] through the test of first-order FV scheme sug-
gested use of limiters to obtain results with higher order accuracy.
Extended to higher order accurate scheme, Anastasiou and Chan
[1] incorporated slope limiters with the Roe type FV solver to
model dam-break flows. Other dam-break flow studies using FV
method can be found in Bermudez and Vazquez [8], Rogers et al.
[24], Brufau et al. [7], Audusse and Bristeau [2], Valiani and
Begnudelli [31], etc.

http://dx.doi.org/10.1016/j.compfluid.2015.03.011
0045-7930/� 2015 Elsevier Ltd. All rights reserved.

⇑ Corresponding author. Tel.: +1 713 743 4277; fax: +1 713 743 4260.
E-mail addresses: wooda@tamug.edu (A. Wood), khwang@uh.edu (K.-H. Wang).

1 Current address: Dept. of Maritime Systems Engineering, Texas A&M University at
Galveston, Galveston, TX 77553, USA.

Computers & Fluids 114 (2015) 254–264

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2015.03.011&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2015.03.011
mailto:wooda@tamug.edu
mailto:khwang@uh.edu
http://dx.doi.org/10.1016/j.compfluid.2015.03.011
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


Regarding the adoption of the FD method for dam-break flow
modeling, one of the commonly selected numerical techniques is
the MacCormack scheme ([19]). The MacCormack scheme is an
explicit, second-order finite-difference scheme, which has been a
popular scheme due to its effectiveness in numerical simulations
and capability of modeling shock waves. As indicated by Garcia
and Kahawita [14], the MacCormack scheme has an ability to
simultaneously handle calculations of slowly varying flows, as well
as, rapidly varying flows containing shocks. However, shock cap-
turing algorithms for tracking the evolution of any discontinuity
in the solution may introduce unwanted numerically generated
oscillations. According to Harten [16], these oscillations not only
damage the accuracy of the numerical solution, but can also induce
nonlinear instabilities and trigger convergence to non-physical
solutions. To resolve these problems, artificial diffusion is typically
added or incorporated into the algorithm to remove the spurious
oscillations that appear in the computational domain. However,
the artificial diffusion terms require fine tuning in order to remove
the oscillations without smearing the initial wave front. Due to the
numerical oscillations that were observed using the standard
MacCormack scheme, the Total Variation Diminishing (TVD)
MacCormack scheme [27,28] has been selected to incorporate arti-
ficial diffusion into the scheme.

Compared to the MacCormack’s explicit scheme, use of the
implicit schemes in solving the SWE can improve the stability
and accuracy of the FD solutions. The Alternating Direction
Implicit (ADI) scheme, which is an implicit scheme, has been
applied to simulate various free-surface flow conditions, such as
tide-induced flows, in a staggered grid system. However, its appli-
cation to the dam-break flows is very limited. The advantage the
ADI scheme has over most implicit schemes is its ability to solve
the governing equations directly without using an iteration proce-
dure for a solution.

One of the first teams of researchers to apply the ADI scheme to
fluid dynamics was Wilkes and Churchill [34]. Leendertse and
Gritton [17] used the ADI scheme to simulate tide-induced flow
and the transport of contaminants into Jamaica Bay in Long
Island, New York. Later, Falconer [11] developed an ADI model to
simulate tide-induced water levels, depth averaged velocities and
nitrogen levels in Poole Basin, Poole Harbour and Holes Bay in
Dorset, England. For modeling three-dimensional (3-D) flows and
salinity transport in estuaries, Wang [32,33] adopted ADI approach
to calculate the vertically integrated velocities that were used in 3-
D computations. Molls and Chaudhry [22] used a ADI based model
to study a hydraulic jump in a straight channel, flow in a converg-
ing channel, flow in a spur dike, and flow in a channel 180� bend.
Recently, by using an ADI solver, Liang et al. [18] investigated
numerically the problems of a partial dam-break in a square chan-
nel and transcritical flow in a frictionless channel with a bump and
a dike break.

In terms of experimental studies, the types of experiments vary
from dam-breaks in a straight flume, a curved flume or a channel
bend, to a dam-break in a channel with an obstruction. Martin
and Moyce [20] performed two-dimensional dam-break
experiments in a rectangular and semicircular sections and a
three-dimensional axial collapse of circular cylinders. The effect
of bottom resistance on dam-break flows was examined
experimentally by Dressler [10]. A dam-break experiment in a
channel with a 180� bend was carried out by Miller and
Chaudhry [21], where video cameras and resistance gauges were
used to record the data.

Bellos et al. [4] performed a series of two-dimensional
dam-break experiments in a converging–diverging channel with
different channel slopes and reservoir depths. Three-dimensional
dam-break experiments in a rectangular channel were conducted
by Fraccarollo and Toro [12]. Capart and Young [9] examined

experimentally the scouring of a horizontal granular bed by a
dam-break flow. Brufau et al. [7] tested three physical models:
a dam-break flow over a triangular obstacle, a non-symmetric
dam-break in a pool with a pyramidal obstacle, and the propagation
of a flood wave in the Toce River physical model. For dam-break
flows occurred in channels with changing flow direction, Frazão and
Zech [13] conducted numerical and experimental investigations
on dam-break flow in channels with 90� bend. The spatial data
rather than the time series data were presented. Their numerical
approach was based on the FV method. Two-dimensional and
three-dimensional modeling efforts were spent by Biscarini et al.
[6] to study dam-break flows in a 90� bend channel.

In this study, a shallow-water equation based two-dimensional
free-surface flow solver with the implementation of an ADI finite-
difference scheme and coordinate transformation technique has
been developed to model dam-break flows of selected cases. The
governing equations with variables of contravariant velocities are
transferred into the curvilinear coordinate system to allow for a
better fit of computational domain to a physical domain, especially
a more complex channel configuration. The less stability con-
strained ADI scheme is applied to formulate FD equations to be
solved directly for the water depth and velocity components.
Model performance is examined with results compared to other
published experimental data for the cases of dam-break flows in
a converging–diverging channel and a channel with a 45� bend.
Good agreements are obtained. To further the verification of the
ADI model, a series of dam-break experiments in a channel with
a 90� bend were performed in the hydraulic lab at the University
of Houston. The predicted dam-break water depths downstream
of the dam face again give reasonable agreement with recorded
data from model tests.

2. Governing equations

The governing equations adopted for the development of sim-
ulation model are the two-dimensional shallow water equations
given as
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where h is water depth, g is the gravitational constant, and u and v
are the vertically averaged velocity components along the x- and y-
directions respectively. The channel bed slopes, S0x and S0y, are
defined as
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; ð4a;bÞ

where zf is the channel bed elevation. The bottom friction slopes Sfx

and Sfy can be calculated according to the Manning’s formula as
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where n is the Manning’s roughness coefficient, C0 is 1 for SI units or
1.49 for British units. For the governing equations, Eq. (1) represents
the continuity equation while Eqs. (2) and (3) describe the con-
servation of momentum along the x- and y- directions respectively.
Various approaches or methods can be selected to solve Eqs. (1)–(3)
numerically. In this study, the finite-difference implicit scheme in a
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