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a b s t r a c t

A one-equation sub-grid scale (SGS) model with a variable eddy-viscosity coefficient is developed for
large-eddy simulation. The model coefficient is determined based on the shear and vorticity parameters
accompanied by the hybrid time scale (Tt). The current model accounts for the SGS kinetic energy which
is not considered in the dynamic Smagorinsky model (DSM). The eddy-viscosity coefficient preserves the
anisotropic characteristics of turbulence in the sense that it is sensitized to non-equilibrium flows. In
addition, it guarantees the positivity in the energy components. Unlike the original Smagorinsky model
and DSM, the current SGS model does not need any ad-hoc damping function or clipping. The model is
validated against well-documented flow cases, yielding predictions in good agreement with the direct
numerical simulation (DNS) and experimental data. Comparisons indicate that the present model offers
competitiveness with the DSM.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In large-eddy simulation (LES), the flow field is decomposed
into two components, namely, the prominent large scale and the
sub-grid scale (SGS). The larger scale structures of the flow field
are solved directly while the effects of the smaller scales which
are smaller than the filter size are modeled. Typically, the grid itself
is used as the low-pass filter, giving rise to the approach known as
the implicit filter, which is the most commonly employed scheme
in LES since no explicit filtering is applied to the governing equa-
tions. The SGS model plays a vital role in the performance of the
LES method. The first SGS eddy-viscosity model is due to Smago-
rinsky [1]. This model has a few drawbacks that limit its applica-
tion to some fluid flow problems. One of these shortcomings is
that the model needs an empirical constant which varies for differ-
ent flow problems. The second shortcoming is due not to reproduc-
ing correctly the decrease in turbulence level approaching the wall.

To overcome these limitations, Germano et al. [2] implemented
a dynamic method in which the model coefficient is determined
dynamically through the scale-similarity definition and the local-
equilibrium hypothesis. The model coefficient thus obtained is a
local value, varying in time and space over a fairly wide range with
both negative and positive values. Although a negative coefficient

and consequently negative eddy-viscosity is often interpreted as
the flow of energy from the SGS eddies to the resolved eddies
(referred to as back-scatter) and regarded as a desirable attribute
of the dynamic Smagorinsky model (DSM), too large a negative
eddy-viscosity causes numerical instability, eventually leading to
an excessive level of numerical noise or even divergence of the
numerical solution. To avoid this occurrence, the coefficient is sim-
ply clipped at zero. This method is slightly different from the usual
practice in which the total viscosity (laminar viscosity + eddy-vis-
cosity) is equated to zero, thus allowing a small SGS eddy-viscosity.

In principle, the main attention should be drawn to the calcula-
tion of so-called Smagorinsky constant (Cs). In the original SGS
model, (Cs) is assigned a constant value which needs to be changed
from one flow to another. In the dynamic version of the model, Cs

(or Cd) is calculated based on variational methods, namely the least
square minimization [3] or the Lagrangian method [4]. These
methods produce a unique value for Cs from a system of five scalar
equations, relating the anisotropic part of SGS turbulent stress ten-
sor to the resolved strain-rate tensor. However, this procedure is
proven to have a lack of accuracy, especially at a high Reynolds
number for confined flows close to the wall region [5].

The value of Cs calculated by the dynamic approach is also incapa-
ble of reproducing the local sub-grid dissipative process. Nicoud and
Ducros [6] proposed a new sub-grid scale model (i.e., WALE: wall-
adapting local eddy-viscosity) for large eddy simulation in complex
geometries with a constant coefficient in the eddy-viscosity
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formulation. This model which is based on the square of the velocity
gradient tensor accounts for the effects of both the strain-rate and
the rotation rate of the smallest resolved turbulent fluctuations. It
does not involve explicit filtering, averaging or clipping procedures,
and the eddy-viscosity goes to zero in the vicinity of a wall so that
neither a(dynamic) constant adjustment nor a damping function is
needed to compute wall-bounded flows. The model produces zero
eddy-viscosity in the case of a pure shear. Thus, it is possible to repro-
duce the laminar to turbulent process through the growth of linear
unstable modes. Vreman et al. [7] developed a new SGS model with
constant coefficients. In this model, the sub-grid dissipation vanishes
for laminar flows or close to the walls, and it does not need any aver-
aging or clipping for ensuring the numerical stability. Moreover, it
requires no wall-damping function for the turbulent viscosity pro-
duction which is difficult to formulate for complex flows with sepa-
ration, curvature and rotation.

You and Moin [8] proposed a dynamic approach based on the
work of Vreman et al. [7] to determine the model coefficient. They
introduced a ‘‘global equilibrium’’ that assumes a global balance
between the SGS dissipation and the viscous dissipation. In this
model, the model coefficient is globally uniform and no ad-hoc
clipping is needed for the numerical instability.

Zang et al. [9] formulated a mixed model in which the scale sim-
ilarity model of Bardina [10] and dynamic Smagorinsky model of
Germano [2] are combined. This model showed better predictions
compared with the dynamic Smagorinsky model, however it expe-
riences negative and highly fluctuating values for the model
coefficients.

In this paper, a new model for calculating Cs (denoted Ck hereaf-
ter) is proposed in which the model coefficient is determined from
the strain-rate and vorticity parameters. Therefore, it responds to
both the shear and vorticity dominated flows that are far from equi-
librium. The new coefficient also ensures realizability of the
resolved normal stresses in question. Unlike the DSM, this model
needs only a single filter making it more robust for use in majority
of fluid flow problems. In addition, it requires no ad-hoc strategies
for achieving the numerical stabilization. Finally, one can save some
computational effort in the proposed model, since the test-filtering
operation on the SGS stress is not needed.

2. Mathematical formulation

A spatial filter is employed in LES to separate the large scales
from the small scales that are to be modeled [11]. A filtered vari-
able in LES is expressed as:

f ¼ �f þ f sgs;
�f ¼

Z
R3

Gðx; x0Þf ðx0Þdx0 ð1Þ

where Gðx; x0Þ is a low pass filter function. A filter operator can be of
different types such as the top-hat filter, the Gaussian filter or the
sharp Fourier cutoff filter. The top-hat and Gaussian filters give sim-
ilar results; in particular, they both smooth the large-scale fluctua-
tions as well as the small-scale ones, unlike the Fourier cutoff,
which only affects the scales below the cutoff wave number [12].
Applying the spatial filter to incompressible Navier–Stokes equa-
tions and using the commutation characteristics, the LES equations
yield:
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The overbar notation denotes the application of a top-hat filter and m
is the kinematic viscosity. On the right-hand side, an unresolved
term sij remains to be modeled. This term is analogous to the

Reynolds-stress tensor of RANS (Reynolds-averaged Navier–Stokes).
Since in the LES formulation the larger length scales are resolved, it
denotes the turbulent SGS stresses and hence, is smaller than its
counterpart in RANS. The SGS stress tensor is defined as

sij ¼ uiuj � �ui�uj ð4Þ

The role of the SGS model is to remove energy from the resolved
scales. In LES, the small dissipative scales are not resolved accu-
rately. Therefore, the SGS model is needed to account for the dissi-
pation of turbulent kinetic energy to the viscous forces. Thus, the
SGS models do not attempt at producing SGS stresses accurately
but only accounts for their effect in a statistical sense. The unknown
SGS turbulent stresses resulting from the filtering operation in Eq.
(4) need a closure. Following the Boussinesq approximation, the
relationship between the anisotropic part of the SGS stress tensor
and the large-scale (i.e., resolved) strain-rate tensor can be
expressed as:

sij �
1
3

dijskk ¼ �2mT Sij; Sij ¼
1
2
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The isotropic part of stress tensor ð13 dijskkÞ is implicitly added to the
pressure. The SGS eddy-viscosity mT is assumed to be a scalar quan-
tity and is determined from the SGS kinetic energy ksgs by the
equation:

mT ¼ Ck D
ffiffiffiffiffiffiffi
ksgs

q
ð6Þ

where ksgs is defined as

ksgs ¼
1
2
skk ¼

1
2

ukuk � �uk�ukð Þ ð7Þ

which can be obtained by contracting the subgrid-scale stress in Eq.
(4). However, with the current model ksgs is computed from its
transport equation, given in Section 2.1. The grid-filter length (or
width) D is based on the cell volume:

D ¼ ðD1D2D3Þ
1
3 ð8Þ

where D1; D2 and D3 are the grid sizes in x; y and z directions,
respectively. The eddy-viscosity coefficient Ck appearing in Eq. (6)
is an indisputably flow-dependent quantity which can be readily
computed as a scalar function of the invariants formed on the
resolved strain-rate Sij and vorticity Wij tensors in question. The
resolved strain-rate tensor Sij is given in Eq. (5). The resolved Wij

is given by

Fig. 1. Ck profile against DNS data.
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