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a b s t r a c t

In this paper, a time dependent one-dimensional linear advection–diffusion equation with Dirichlet
homogeneous boundary conditions and an initial sine function is solved analytically by separation of
variables and numerically by the finite element method. It is observed that when the advection becomes
dominant, the analytical solution becomes ill-behaved and harder to evaluate. Therefore another
approach is designed where the solution is decomposed in a simple wave solution and a viscous pertur-
bation. It is shown that an exponential layer builds up close to the downstream boundary. Discussion and
comparison of both solutions are carried out extensively offering the numericist a new test model for the
numerical integration of the Navier–Stokes equation.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical integration of the Navier–Stokes equations by
standard methods like FXM (Finite X Methods), X being D(iffer-
ence), E(lement), V(olume) or by spectral and spectral elements
requires a careful design. This is especially true and essential when
long time integration ranges are involved as is the case for direct
numerical simulation (DNS) or large-eddy simulations (LES) of tur-
bulent flows where the evaluation of time averaged quantities
imply very long time series to obtain meaningful information
and statistics. Therefore temporal stability and space accuracy
are the basic requirements needed to render the algorithms effi-
cient on large scale parallel machines and to extract relevant phys-
ical phenomena.

The practitioners of computational fluid dynamics have decom-
posed the analysis of the complexity and stiffness of the Navier–
Stokes equations into simpler problems like the Stokes (linear)
equations that embody the difficulties of the space discretization
of the velocity and pressure fields and the advection–diffusion
problem that is related to the transport character of the non-linear
terms. This last class of problems includes the non-linear Burgers
equations and the linear advection–diffusion (LAD) equation. In
this paper, we will address the one-dimensional LAD equation with

homogeneous Dirichlet boundary conditions as this is a meaning-
ful test for established or novel discrete schemes. For high Rey-
nolds number flows the advection is dominating diffusion but
the presence of the boundaries imposing no-slip wall conditions
complicates the solution of the problem. Boundary layers develop
and in most cases influence deeply the flow dynamics. No-slip wall
boundary conditions impede the general use of periodic Fourier
representation and spectral calculation.

Even though the LAD equation is linear it is difficult to find
closed form analytical solution in the literature. Most of the efforts
have been devoted to the solution of LAD with an upstream bound-
ary condition and a Robin or Neumann downstream condition. The
presence of the gradient condition at the exit of the domain eases
the development of the analytical solution. The paper by Pérez
Guérrero et al. [10] uses a change of variable to obtain a heat equa-
tion which is then solved by a generalized integral transform tech-
nique proposed by Cotta [4]. In [13], van Genuchten et al. are able
to use a variable transformation that reduces the partial differen-
tial equation to an ordinary differential equation the solution of
which is expressed by the complementary error function. Other
methodologies are possible to tackle the LAD problem on finite
or infinite domains. Without the pretension of being exhaustive,
we can cite Bosen [3], Kumar et al. [8], Pérez Guérrero et al. [11]
and Zoppou and Knight [14].

On the numerical side, finite differences have been applied, see
for example [5]. In the finite element framework, Gresho et al. [7]
investigate a time integrator based on the combination of the

http://dx.doi.org/10.1016/j.compfluid.2014.11.006
0045-7930/� 2014 Elsevier Ltd. All rights reserved.

⇑ Corresponding author.
E-mail addresses: mojtabi@imft.fr (A. Mojtabi), michel.deville@epfl.ch (M.O.

Deville).

Computers & Fluids 107 (2015) 189–195

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2014.11.006&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2014.11.006
mailto:mojtabi@imft.fr
mailto:michel.deville@epfl.ch
http://dx.doi.org/10.1016/j.compfluid.2014.11.006
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


trapezoid rule and the second-order Adams–Bashforth scheme
with piecewise linear elements for space discretization. Some ana-
lytical solutions are presented in the various examples solved
throughout the paper. However none of them treats the LAD prob-
lem with homogeneous Dirichlet conditions and a smooth initial
condition like a sine function. In the book of Donea and Huerta
[6] the LAD problem is proposed with a truncated Gaussian profile
as the initial condition.

In this paper we will solve the LAD problem with homogeneous
boundary conditions and a sine profile for the initial condition. This
is exactly the same initial and boundary conditions that were
imposed for the Burgers equation solved by Basdevant et al. [2].
We will be able to compare the physics associated with both prob-
lems. The paper is organized as follows. Section 2 describes the
LAD problem which is solved in closed form by the introduction
of a change of variables. Section 3 details the analytical solution
when the viscosity goes to zero. In this case the problem at hand
is a simple wave equation perturbed by the presence of a very
weak viscous term. Section 4 presents the Fourier solution when
periodic conditions are applied. Section 5 is devoted to some con-
siderations related to energy conservation. Section 6 treats the
numerical method obtained by linear finite elements and a time
integration using a Crank–Nicolson scheme for the viscous term
and a second order Adams–Bashforth scheme for the advection
term. Section 7 reports the results produced by both approaches
and compares them. Finally the last section draws conclusions.

2. Linear advection–diffusion equation

The unsteady linear advection–diffusion equation is given by
the following relation

@u
@t
þ c

@u
@x
¼ m

@2u
@x2 ; �1 < x < 1; t 2 �0; T�; ð1Þ

where u is the velocity variable, c > 0 the constant advection veloc-
ity, m the kinematic viscosity and time t. We will impose homoge-
neous Dirichlet boundary conditions uð�1; tÞ ¼ uð1; tÞ ¼ 0 and the
initial condition uðx;0Þ ¼ � sinpx. These initial and boundary con-
ditions were already used for the Burgers equation in [2]. This
choice will allow us to compare the two cases.

To obtain a closed form solution, let us make the change of
variables

uðx; tÞ ¼ vðx; tÞeaxþbt : ð2Þ

Introducing (2) in (1) and simplifying by the exponential, one
obtains

@v
@t
þ bþ ca� a2m
� �

v þ c � 2amð Þ @v
@x
¼ m

@2v
@x2 : ð3Þ

As a and b are free parameters, we choose them in such a way that

bþ ca� a2m ¼ 0; ð4Þ
c � 2am ¼ 0: ð5Þ

Therefore, a ¼ c=2m and b ¼ �c2=4m. The governing equation for v is
reduced to the standard heat equation

@v
@t
¼ m

@2v
@x2 ; ð6Þ

subject to the homogeneous conditions vð�1; tÞ ¼ vð1; tÞ ¼ 0 and
the initial condition

vðx;0Þ ¼ � sin pxe�ax ¼ � sin pxe�
cx
2m: ð7Þ

Let us use the method of separation of variables to solve (6) by set-
ting vðx; tÞ ¼ XðxÞTðtÞ. Omitting the details of the algebra, this leads
to the solution

vðx; tÞ ¼
X1
k¼0

Ak sin
kpx

2
þ Bk cos

kpx
2

� �
e�mk2p2

4 t : ð8Þ

The boundary conditions impose the conditions
A2pþ1 ¼ B2p ¼ 0; p ¼ 0;1; . . .. Eq. (8) becomes

vðx; tÞ ¼
X1
p¼0

A2p sinðppxÞe�mp2p2t þ B2pþ1 cos
2pþ 1

2
px

� �
e�mð2pþ1Þ2

4 p2t:

ð9Þ

Applying the initial condition (7) to Eq. (9) yields

X1
p¼0

A2p sin ppxþ B2pþ1 cos
2pþ 1

2
px ¼ � sinðpxÞe�cx

2m: ð10Þ

Using the orthogonality property of Fourier polynomials, the coeffi-
cients A2p and B2pþ1 are obtained solving the relations

A2p

Z 1

�1
ðsin ppxÞ2dx ¼ �

Z 1

�1
sinðpxÞ sinðppxÞe�cx

2mdx; ð11Þ

B2pþ1

Z 1

�1
cos

2pþ1
2

px
� �2

dx¼�
Z 1

�1
sinðpxÞcos

2pþ1
2

px
� �

e�
cx
2mdx:

ð12Þ

With the help of standard trigonometric relations, the right hand
side integral of (11) may be rewritten asZ 1

�1
sinpxsinppxe�

cx
2m dx¼1

2

Z 1

�1
cosðp�1Þpx�cosðpþ1Þpx½ �e�cx

2mdx:

ð13Þ

Furthermore one has also the identity (cf. [1])Z
e�ax cos ppx dx ¼ e�ax

a2 þ p2p2 �a cos ppxþ pp sin ppxð Þ: ð14Þ

Therefore one gets

A2p ¼
�32ð�1Þpþ1m3cp2p sinhðc=2mÞ

c4 þ 8ðcpmÞ2ðp2 þ 1Þ þ 16ðpmÞ4ðp2 � 1Þ2
: ð15Þ

A similar development gives

B2pþ1 ¼
�16ð�1Þpþ1m3cp2ð2pþ 1Þ coshðc=2mÞ

c4 þ ðcpmÞ2ð8p2 þ 8pþ 10Þ þ ðpmÞ4ð4p2 þ 4p� 3Þ2
: ð16Þ

With (2) and the relations (9), (15), (16) one writes

uðx; tÞ ¼ 16p2m3ce
c

2mðx�
c
2tÞ

� sinh
c

2m

� �X1
p¼0

ð�1Þp2p sinðppxÞe�mp2p2 t

c4 þ 8ðcpmÞ2ðp2 þ 1Þ þ 16ðpmÞ4ðp2 � 1Þ2

"

þ cosh
c

2m

� �X1
p¼0

ð�1Þpð2pþ 1Þ cos 2pþ1
2 px

� �
e�mð2pþ1Þ2

4 p2 t

c4 þ ðcpmÞ2ð8p2 þ 8pþ 10Þ þ ðpmÞ4ð4p2 þ 4p� 3Þ2

3
5:
ð17Þ

When the viscosity goes to zero, the solution becomes

uðx; tÞ ¼ 8p2 m
c

� �3
e

c
2mððxþ1Þ�c

2tÞ

X1
p¼0

ð�1Þp 2p sinðppxÞ þ ð2pþ 1Þ cos
2pþ 1

2
px

� �� �" #
: ð18Þ

We observe that the presence of the exponential term in (18) ren-
ders the problem stiffer and the closed form solution blows up for
vanishing viscosity. This ill-behavior requires a special treatment.

3. Analytical solution for vanishing viscosity

We will decompose the problem solution in two parts

uðx; tÞ ¼ uaðx; tÞ þ mUðx; tÞ; ð19Þ
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