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a b s t r a c t

In the following work we apply the boundary element method to two-phase flows in shallow microchan-
nels, where one phase is dispersed and does not wet the channel walls. These kinds of flows are often
encountered in microfluidic Lab-On-A-Chip devices and characterized by low Reynolds and low capillary
numbers.

Assuming that these channels are homogeneous in height and have a large aspect ratio, we use depth-
averaged equations to describe these two-phase flows using the Brinkman equation, which constitutes a
refinement of Darcy’s law. These partial differential equations are discretized and solved numerically
using the boundary element method, where a stabilization scheme is applied to the surface tension
terms, allowing for a less restrictive time step at low capillary numbers. The convergence of the numer-
ical algorithm is checked against a static analytical solution and on a dynamic test case. Finally the algo-
rithm is applied to the non-linear development of the Saffman–Taylor instability and compared to
experimental studies of droplet deformation in expanding flows.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Microhydrodynamics is a branch of fluid dynamics that deals
with slow viscous flows at small length scales. In recent years
the research field of microfluidics investigated the possibilities that
microhydrodynamics offers to perform chemistry or biology on a
micrometric scale. Such efforts have led to an increasing number
of Lab-On-A-Chip applications in the last ten years [1]. In this
course droplet microfluidics has emerged [2], because it exploits
the laminar flow in microchannels to precisely control and steer
operation on droplets, which act as highly parallelizable reaction
chambers.

Microfluidic length scales are in the order of tens to hundreds of
micrometers. When microfluidic channels are filled with two
immiscible liquids, for instance water and oil, the viscosities are
in the order of l � 10�3 Pa s and surface tension or interfacial ten-
sion in the order of c � 10�2 Pa m, depending on the fluid mixture
and surfactants. Due to the small length scale the flow resistance in
these channels is high, which is one reason why flow rates usually
range between a few nl/min to hundreds of ll=min with flow
velocities in the order of mm/s. The Reynolds number, Re ¼ qUL

l , is

small and therefore, it is often a reasonable approximation to dis-
card the non-linear inertial terms and to consider Stokes flow,
which is described in Section 2.

However, when considering two-phase flow even in the Stokes
regime, the dynamics become non-linear due to the free interface
between both liquids. The non-linearity stems from domains of dif-
ferent viscosity separated by a mobile interface under surface
tension.

Two competing effects dominate the dynamics; one comes from
viscous shear and the other from surface tension. The capillary
number expresses the balance between viscosity and surface ten-
sion: Ca ¼ lU

c , which is considered here to be between 10�5 and
10�1.

Throughout the article we consider shallow channels that lie in
a common plane. Instead of trying to resolve the full three-
dimensional problem, we solve a depth-averaged problem, which
is two-dimensional. For shallow channels the velocity profile in
the thin direction (z-axis) is assumed to be parabolic, a hypothesis
that is also used to derive Darcy’s law in two-dimensions (x–y
plane). Darcy’s law states that the flow velocity u is given by the
pressure gradient divided by viscosity l and a permeability coeffi-
cient k2

;rp ¼ �luk2.
Although there have been propositions to account for tangential

surface stresses in Darcy’s law [3], the inability to impose tangen-
tial stresses and velocities renders this approach incomplete.
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In this work we propose the use of the Brinkman equations
instead, which include a correction to the Darcy’s law in form of
the depth-averaged in-plane Laplacian, a reminiscence of the 2D
Stokes equation. For droplet flows the Brinkman equation was to
our knowledge first proposed by Boos and Thess [4] and Bush
[5], who treated the flow induced by a thermo-capillary effect.

The Brinkman equation is solved with a boundary element
method (BEM), which eliminates one more dimension turning
the problem from a 2D differential equation into an integral equa-
tion on a 1D line. While BEM approaches have been followed for 3D
Stokes flows [6], for 2D Stokes flow [7] and Darcy flow [8], recall
that simulations of 2D Stokes flow cannot account for the confine-
ment in the z-direction whereas Darcy’s law becomes invalid close
to boundaries and interfaces. The use of the Brinkman equation
requires high aspect ratios to justify depth-averaging but we will
see that it might still accurately captures the dynamics for aspect
ratios approaching 1. Close to boundaries or interfaces the Brink-
man equation gives much better results than Darcy’s law, because
it captures depth averaged boundary layers even if the averaged
equations become inconsistent [4].

The derivation of the depth-averaged problem is presented in
Section 2 and the numerical method is described in Section 3
together with a stabilization scheme for the surface tension on
the interface and an acceleration using Gauss block pre-condensa-
tion and multi-core parallelism.

The method is applied to the non-linear development of
the Saffman–Taylor instability of finger formation and to the
numerical modeling of two recent experimental studies of droplet
deformation in Section 4. Section 5 concludes with a brief discus-
sion of the method and its results.

2. Governing equations

Throughout the article vectors and tensors are written in bold
face unless they are represented by a Greek character. Scalars or
components of vectors and matrices are written in normal face.
All field variables are non-dimensionalized, using a characteristic
length scale L, the pressure scale P ¼ cref=L and the velocity scale
U ¼ cref=lc , which are build using the continuous fluids viscosity
lc and surface tension cref .

Low Reynolds number flows are described by the 3D Stokes and
continuity equation, where non-dimensional operators and vari-
ables in 3D are denoted with a tilde.

k/
~D~u�r~p ¼ 0 and ~r � ~u ¼ 0: ð1Þ

The non-dimensional parameter k/ compares the viscosity of the
considered fluid phase / against the viscosity of the carrier fluid,
k/ ¼ l/=lc . For the dispersed phase / ¼ d; kd ¼ k ¼ ld=lc , and for
the continuous phase / ¼ c; kc ¼ 1. Because of the small size and
the horizontal alignment gravitational effects are neglected.

2.1. Brinkman model for depth-averaged flow

The non-dimensional height is h ¼ H=L and is considered to be
small, h� 1. As the flow is confined between two plates at a dis-
tance h, one considers only fluid motion in the x–y plane and
neglects the vertical velocity component, which is equivalent to
the assumption of constant pressure in the z-direction.

Under this assumption the flow field writes euðx; y; zÞ ¼
ðuxðx; yÞf ðzÞ; uyðx; yÞf ðzÞ;0ÞT . The two-dimensional velocity vector

uðx; yÞ ¼ uxðx; yÞ
uyðx; yÞ

� �
represents mean velocities, which demandsR h

0 f ðzÞdz ¼ h. With these assumptions Eq. (1) can be written in
terms of two-dimensional variables and operators:

k/ Duþ u
@2f ðzÞ
@z2

 !
�rp ¼ 0 and r � u ¼ 0: ð2Þ

When h� 1 the profile f ðzÞ becomes a parabolic Poiseuille profile
and its second derivative in Eq. (2) is known. Using the parabolic
profile f ðzÞ ¼ 6 z

h 1� z
h

� �
in Eq. (2) and depth-averaging over z we

get the amalgam equation of Darcy equation and 2D Stokes equa-
tion given in Eq. (3), which is called Brinkman equation and was
first applied in granular media flows [9],

k/ Du� k2u
� �

�rp ¼ 0; r � u ¼ 0; k ¼
ffiffiffiffiffiffi
12
p

h
: ð3Þ

We shall briefly illustrate the advantage of the Brinkman equa-
tion through a comparison of its solution for a flow in a rectangular
duct of width w with the 3D Stokes solution. The exact solution can
be found by separation of variables and is given for instance in
Langlois and Deville [10]. Depth-averaging the solution of the 3D
Stokes equation gives the mean velocity across the channel.

h~ui ¼�@p
@x

h2

12
1�96

p4

X cosh ð1þ2nÞpy=hð Þ
ð1þ2nÞ4 cosh ð1þ2nÞpw=ð2hÞð Þ

 !
: ð4Þ

In comparison, the mean velocity using of the depth-averaged
Brinkman equation is:

u ¼ � @p
@x

h2

12
1�

cos h
ffiffiffiffiffiffi
12
p

y=h
� �

cos h
ffiffiffiffiffiffi
12
p

w=ð2hÞ
� �

0@ 1A: ð5Þ

Both solutions show at leading order a hyperbolic cosine with sim-
ilar prefactors, 96=p4 � 0:986 for the Stokes equation instead of 1
for the Brinkman equation and in the hyperbolic cosine a factor
p � 3:14 instead of

ffiffiffiffiffiffi
12
p

� 3:46. The depth-averaged velocity pro-
files are plotted in Fig. 1 for different aspect ratios. One observes
that the solution from the Brinkman equation tends the solution
of the 3D Stokes equation as the aspect ratio increases. Already
for square channels, w=h ¼ 1, the solutions are not too far from each
other. Whereas a comparison with the Darcy equation, which is
constant in y, gives uDarcy ¼ � @p

@x
h2

12. Far away from the walls the
Darcy equation gives correct results for high aspect ratios but fails
near walls and for a moderate confinement.

In a more detailed analysis Gallaire et al. [11] showed that even
in the complex thermo-capillary flow around a droplet the aver-
aged model agrees almost perfectly with 3D Stokes. Including the
in-plane Laplacian yields two important improvements in compar-
ison to Darcy’s law: (1) tangential velocities and stress can be
imposed on boundaries and (2) there appears a boundary layer
near walls and interfaces that scales like h, the non-dimensional
height of the channel.

2.2. In-flow and out-flow boundary conditions

Boundary conditions of the single-phase problem prescribe
either the stress or the velocity. The typical no-slip boundary con-
dition on channel walls is u ¼ 0. In contrast to Darcy flow, the
Brinkman model imposes normal and tangential velocities. The
normal and tangent are given by a vector that contains their pro-
jections on the x and y axis, e.g. n ¼ ðnx;nyÞT .

As typical inflow boundary condition the solution of the Brink-
man equation in a straight channel flow is used. For a straight
inflow boundary of length w parameterized by s, whose origin is
in the middle of the boundary:

uinðsÞ ¼ Ca
cos hðkw=2Þ � cos hðksÞ

cos hðkw=2Þ � 1
: ð6Þ

It is worth observing that the dimensionless inflow velocity is
represented by the capillary number Ca because the velocity is
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