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a b s t r a c t

In this paper, we construct very efficient high-order schemes for general time-dependent advection–
diffusion problems, based on the first-order hyperbolic system method. Extending the previous work
on the second-order time-dependent hyperbolic advection–diffusion scheme (Mazaheri and Nishikawa,
NASA/TM-2014-218175, 2014), we construct third-, fourth-, and sixth-order accurate schemes by
modifying the source term discretization. In this paper, two techniques for the source term discretization
are proposed; (1) reformulation of the source terms with their divergence forms and (2) correction to the
trapezoidal rule for the source term discretization. We construct spatially third- and fourth-order
schemes from the former technique. These schemes require computations of the gradients and second-
derivatives of the source terms. From the latter technique, we construct spatially third-, fourth-, and
sixth-order schemes by using the gradients and second-derivatives for the source terms, except the
fourth-order scheme, which does not require the second derivatives of the source term and thus is even less
computationally expensive than the third-order schemes. We then construct high-order time-accurate
schemes by incorporating a high-order backward difference formula as a source term. These schemes
are very efficient in that high-order accuracy is achieved for both the solution and the gradient only
by the improved source term discretization. A very rapid Newton-type convergence is achieved by a com-
pact second-order Jacobian formulation. The numerical results are presented for both steady and time-
dependent linear and nonlinear advection–diffusion problems, demonstrating these powerful features.

Published by Elsevier Ltd.

1. Introduction

In this paper, we construct very efficient high-order schemes for
general time-dependent advection–diffusion problems, based on
the first-order hyperbolic system method [1,2]. In this method,
the diffusion term is reformulated as a hyperbolic system, leading
to the unification of advection and diffusion as a single hyperbolic
system [2]. The drastic change in the type of equations, parabolic to
hyperbolic, brings several dramatic improvements in the construc-
tion of numerical schemes: hyperbolic schemes for diffusion, the
same order of accuracy for the solution and the gradients,
orders-of-magnitude convergence acceleration, etc., which have
been demonstrated for steady diffusion and viscous problems in
Refs. [1–5] and unsteady advection–diffusion problems in Ref.
[6]. It is based on the reformulation of the governing equations,
and therefore applicable to any discretization method. In this work,

we consider a Residual-Distribution (RD) method [7], which has
been well developed for hyperbolic systems and has a superior fea-
ture of achieving second-order accuracy in a compact stencil.

In the previous work [6], we extended the hyperbolic method,
for the first time, to time-accurate computations by an implicit
time-integration method based on the second-order backward
difference formula. The resulting scheme was applied to various
time-dependent problems, demonstrating second-order accuracy
for the solution and the gradient achieved at all interior and
boundary nodes in uniform and nonuniform grids at every physical
time step, and rapid convergence for solving implicit-residual
equations by Newton’s method (i.e., less than 5 iterations per
physical time step), which is possible by the compactness of the
RD schemes. As a consequence of the first-order re-formulation
of the equation, the number of linear relaxations performed at
every Newton iteration was shown to increase only linearly with
the grid size, not quadratically as typical for diffusion problems.
The efficiency of the developed second-order schemes was demon-
strated for linear and nonlinear advection–diffusion problems on
highly refined grids, up to 30,000 nodes.
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In this paper, we propose a very simple extension of the second-
order schemes to higher-order. We show that high-order spatial
accuracy can be achieved simply by modifying the source term
discretization. There are two approaches to the source term
discretization: (1) reformulation of the source terms with their
divergence forms and (2) correction to the trapezoidal rule for
the source term discretization. The former technique is based on
the divergence formulation of source terms proposed in Ref. [8]:
write the source term in the divergence form and discretize it in
the same way as the flux divergence term. The latter is based on
a high-order correction to the trapezoidal rule, and thus called here
the generalized trapezoidal rule. In either case, high-order accu-
racy is achieved by making low-order truncation error terms pro-
portional to the residual, which thus vanish in the steady state
and yield high-order accuracy. We solve the resulting implicit-
residual equations by an implicit solver based on the second-order
Jacobian matrix developed in the previous work [6]. As we will
show, the implicit solver is as powerful as Newton’s method; e.g.,
eight orders of magnitude reduction can be achieved in 10 itera-
tions. To enable time-accurate computations, we employ high-
order versions of the backward difference formulas (BDF), which
are incorporated as source terms, and solve the implicit-residual
equations by the implicit solver over each physical time step. In
this manner, the steady state is made equivalent to the next
physical time with all the benefits of the hyperbolic method
retained. We note that the choice of the implicit time stepping
method is independent of the developed high-order RD schemes,
and thus other methods such as implicit Runge–Kutta methods
or space-time methods can also be employed.

The high-order RD schemes developed in this work are signifi-
cantly different from other high-order RD schemes in that our
schemes are based on the first-order hyperbolic system formula-
tion of the advection–diffusion equation [2]. In this approach, the
loss of high-order accuracy in the intermediate Reynolds number,
as discussed in Refs. [9–11], cannot occur because the advective
and diffusive terms are fully integrated into a single hyperbolic
system. If the original advection–diffusion equation is discretized,
a high-order RD scheme needs to be developed for the diffusion
term (i.e., second derivative) and then carefully combined with
an advection scheme, e.g. by using a blending parameter as
described in Ref. [10], to avoid the loss of accuracy. Furthermore,
while high-order RD schemes based on high-order elements
require extra degrees of freedom for each variable, our schemes
are based on linear elements for any order of accuracy but require
extra gradient variable to be added to the solution vector. Note that
the number of extra variables in the high-order elements increase
for higher-order accuracy, but the number of extra variables
required in our approach is fixed and independent of the order of
accuracy. Our approach is somewhat similar to those in Refs.
[12–14], but again is significantly different by the use of first-order
hyperbolic system formulation of the advection–diffusion equation
and by the source term discretization techniques. It is emphasized
that our schemes require only the first and second derivatives of
the source term, or in some cases the first derivatives only; they
do not require the gradient computation for the solution variables.

The third-order schemes developed in this paper are similar to
the third-order finite-volume scheme of Katz and Sankaran [15,16]
in that the second-order truncation error is eliminated by making
it proportional to the residual and the upgrade is achieved by sec-
ond-order accurate gradients. However, as we demonstrate in this
paper, the proposed high-order RD schemes have several superior
features: (1) implicit solver can be constructed by the Jacobian
derived from a compact second-order RD scheme, (2) gradient
computations are required for the source terms only, and not for
the solution,( 3) stiffness due to the second derivative of the diffu-
sion term is completely eliminated, (4) higher-order schemes can

be constructed beyond third-order (in extending it to multi-
dimensions), and (5) the same order of accuracy is achieved for
the gradients, as well. In particular, the fourth-order scheme
constructed in Section 5 is remarkably more efficient because it
does not require second derivatives of the source term, which are
required in the schemes described in Refs. [15,16].

In this paper, we focus on one-dimensional linear and nonlinear
advection–diffusion problems. It certainly serves as a basis for the
development of high-order multi-dimensional RD schemes for
more complex equations. Yet, more importantly, the one-dimen-
sional high-order schemes developed in this paper could poten-
tially bring significant improvements to practical problems such
as material thermal response calculations of thermal protection
systems of atmospheric entry vehicles [17–19], and the experi-
mental aeroheating data reduction [20,21], which are based on
one-dimensional analyses and routinely used in industries (e.g.
NASA). The extension to higher dimensions is beyond the scope
of the paper; it will be addressed in a subsequent paper.

The paper is organized as follows. In the next section, the time-
dependent hyperbolic advection–diffusion system is described. In
Section 3, a compact second-order residual-distribution scheme,
a steady solver, and the second-order discretization are discussed.
In Section 4, the third- and fourth-order RD schemes with source
term reformulation are proposed. In Section 5, the third-, fourth,
and sixth-order RD schemes with source term discretization are
developed and proposed. Numerical results are then presented in
Section 6. Finally, Section 7 concludes the study with remarks.

2. Time-dependent hyperbolic advection–diffusion system

We start with a linear advection–diffusion equation to simplify
the discussion. We will extend the discussion later to a more gen-
eral nonlinear advection–diffusion equation.

Consider the one-dimensional (1-D) time-dependent advec-
tion–diffusion equation:

@tuþ a@xu ¼ m@xxuþ eSðxÞ; ð1Þ

where a and m are both taken to be positive constant, and eS is the
source term. We will follow the procedure we described in Ref.
[6] and rewrite the above equation as a first-order hyperbolic
advection–diffusion system:

@su ¼ �a@xuþ m@xp� a
Dt

uþ SðxÞ; ð2Þ

@sp ¼ ð@xu� pÞ=Tr ; ð3Þ

where the relaxation time, Tr > 0, is arbitrary and defined as
described in Ref. [6], and S includes any existing source terms from
the advection–diffusion problem, eS, as well as any additional terms
that arise from the implicit time-stepping scheme, Dt is the physical
time steps, and s is the pseudo time step. Note that the @tp is taken
as pseudo time derivative, @sp.

The variable a depends on the order of the Backward-Differenc-
ing-Formula (BDF): 1 for the 1st-order (BDF1), 3=2 for the second-
order (BDF2), 11=6 for the third-order (BDF3), 25=12 for the fourth-
order, and 147=60 for the sixth-order time discretizations (see
Table 1). The remaining terms in the BDF are stored in the source
term function SðxÞ. It is well known that the BDF2 is A-stable and
higher-order BDFs are not. Therefore, the second-order scheme is
unconditionally stable, but higher-order BDFs are conditionally
stable. Consequently, the stability of the higher-order schemes
depends on the spatial discretization. Estimates for the maxi-
mum-allowable CFL numbers are given in Appendix A for a set of
representative high-order schemes developed in this paper.

Towards the pseudo steady state, the variable p approaches the
solution gradient and hence the above equation becomes identical
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