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a b s t r a c t

This paper deals with a high-order accurate Residual Distribution scheme for the numerical solution of
dense gas flows on unstructured grids. Dense gas-dynamics studies the flow of gases in the thermody-
namic region above the upper saturation curve, close to the liquid–vapor critical point. In such conditions,
some fluids may exhibit negative values of the fundamental derivative of gas-dynamics, leading to non-
classical gas-dynamic behaviors, such as rarefaction shock waves, mixed shock/fan waves, and shock
splitting. Due to the complexity in performing reliable experimental studies for non-classical gas-dynam-
ics, accurate numerical simulations of dense gas flows are of paramount importance. In this work, advan-
tages in using high-order methods are highlighted, in terms of number of degrees of freedom and
computational time used, for computing the numerical solution with a greater accuracy compared to
lower-order methods, even for shocked flows. Several numerical experiments are also performed to
assess the influence of the thermodynamic models on the problem solution.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

In numerical simulations of compressible flows for standard
aerodynamic applications the ideal gas model, despite its simplic-
ity, represents an acceptable approximation. However, the ideal
gas approximation cannot be considered accurate when pressures
and temperatures are of the order of magnitude of their liquid–
vapor saturation curve. This thermodynamic region is generally
called dense gas region, in contrast to the dilute gas region where
the use of the ideal gas model can be retained valid.

Fluids in dense regime may display so-called non-classical gas-
dynamics phenomena. In these cases, dense gases may have signif-
icantly different properties with respect to dilute gases, from a
quantitative and qualitative point of view. For example, for some
molecularly complex fluids and for some specific conditions near
the saturation curve, the speed of sound can increase with a
decreasing density, differently from what happens in the ideal
gas model [1].

The dynamics of dense gases is governed by a thermodynamic
parameter known as the fundamental derivative of gasdynamics
[2]

C ¼ 1þ q
c

@c
@q

� �
s

; ð1Þ

where q is the density, c is the speed of sound and s is the entropy.
For ideal gases C ¼ ðcþ 1Þ=2 > 1. For some complex fluids and
some particular conditions of pressure and temperature, C may
be lower that one, implying that ð@c=@qÞs < 0. This means that
the behavior of the speed of sound upon isentropic perturbations
is reversed with respect to classical fluids. For some classes of
highly complex heavy fluids, such as for example heavy hydrocar-
bons, perfluorocarbons, and siloxanes [3], C may have negative val-
ues in a subset of the dense gas region next to the saturation curve.
Such fluids are usually referred to as Bethe–Zel’dovich–Thompson
(BZT) fluids, from the researchers who first postulated their exis-
tence; the thermodynamic region characterized by negative values
of C is called the inversion zone. It has been theoretically shown
that, for C < 0, compression waves are smoothed out. As a conse-
quence, compression shocks within the inversion zone violate the
entropy inequality, and are therefore inadmissible; conversely, rar-
efaction shocks are allowed [1,2,4,5].

The interest in BZT fluids is motivated by the potential benefits
in the use of such class of fluids in energy applications. For
instance, in turbo-machinery flows, the shock formation and the
consequent loss of energy could be ideally suppressed if the tur-
bine expansion could happen within the inversion zone. The com-
plexity of performing reliable experimental studies for non-
classical gasdynamics, makes numerical simulation of dense gas
flows an active research field.

In [6], an unstructured implicit Finite Volume (FV) solver, based
on approximate Riemann solver, is used for the simulation of two
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dimensional dense gas flows with the Peng–Robinson–Strijeck–
Vera cubic equation of state [7], and with the Span–Wagner
multi-parameter equation of state [8] in [9]. In [10–12], a centered
solver is used for simulations with the van der Waals and the Mar-
tin–Hou [13] equation of state. Two-dimensional flows exhibiting
non-classical effects through turbine cascades were simulated in
[14,15] with the Martin–Hou [13] equation of state and in [16]
with the Martin–Hou, Peng–Robinson–Strijeck–Vera and the
Span–Wagner equations of state. The McCormack scheme was
used in [14], a second-order time–space accurate flux-limited
method was adopted in [15], while in [16] both structured and
unstructured cell-centered Finite Volume (FV) discretization has
been used. Numerical simulations of three-dimensional flows of
dense gases were performed in [17,18] for a shock tube configura-
tion and in [19] for flows over finite wings.

The majority of the CFD tools presented are based on second-
order FV methods. When complex applications are considered,
the accuracy of these methods is degraded, ranging between first
and second-order due to the irregular and highly stretched meshes.
This work has been motivated by the need to increase the predic-
tive accuracy of simulations of complex flows over complex geom-
etries or (in case of the same accuracy) to alleviate the
computational cost compared to existing numerical schemes. In
this respect, high-order methods seem to be potentially superior
to classical FV schemes, which require extremely fine grids to com-
pute the solution with a sufficiently small level of error, hence with
high computational time and memory usage. When complex fluid
dynamics phenomena are considered, high fidelity solutions are
required to separate numerical discretization errors from modeling
errors, making possible to check the deficits of physical modeling,
since very few experimental data are available.

In this work, the high-order Residual Distribution (RD)
approach [20] for the discretization of the steady Euler equations
is extended for the first time in literature to take into account com-
plex thermodynamic models. The RD method based on the contin-
uous formulation of the problem, introduces less degrees of
freedom (DoFs) than other high-order schemes based on the dis-
continuous approximation of the solution, like Discontinuous
Galerkin methods [21] for example. In addition, with the possibil-
ity to construct non-linear RD schemes, the discretization of con-
tinuous and discontinuous solutions within the same numerical
scheme is straightforward, without the necessity to add artificial
viscosity or empirical shock capturing procedures. Furthermore,
differently from ENO/WENO schemes [22,23], which require large
stencils for the solution reconstruction, RD methods are compact
and hence more efficient.

The present paper is structured as follows. In Section 2, the gov-
erning equations are introduced, together with thermodynamic
models for ideal and dense gases. In Section 3, the description of a
non-linear RD scheme for the solution of advection problems is pre-
sented. In addition, the procedure to impose boundary conditions
and the construction of an efficient implicit solver are shown. Sec-
tion 4 presents numerical results for two and three dimensional
problems. In particular, the accuracy and the efficiency of the solver
are assessed in terms of number of DoFs and CPU time to reach the
desired level of accuracy in the numerical discretization. The effects
of the thermodynamic models [24] on the fluid-dynamic behavior
are also investigated. Finally, in Section 5, conclusion are drawn.

2. Physical model

2.1. Governing equations

In the general case of three spatial dimensions, the dynamics of
compressible flows, when viscous and thermal effect are neglected,

is governed by the following set of non-linear equations, written in
conservative form,

@q
@t þ $ �m ¼ 0
@m
@t þ $ � m�m
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� �
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where q is the density, P is the pressure, I 2 R3 is the identity ten-
sor, the momentum vector m ¼ qv , with v the velocity vector, and
Et is the total energy per unit volume defined as

Et ¼ qeþ kmk
2

2q
¼ qet; ð3Þ

with e the specific (i.e., per unit mass) internal energy and et the
specific total energy.

It is common practice to introduce the vector u of the conserva-
tive variables and the advective flux function faðuÞ

u ¼
q
m
Et

0B@
1CA and faðuÞ ¼

m
m�m

q þ PI

Et þ P
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m
q
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1CCA; ð4Þ

such that the system (2) can be recasted in the following vector
form

@u

@t
þ $ � faðuÞ ¼ 0: ð5Þ

The system (5) is completed with thermodynamic relations for the
variables P and e by the means of the following equations of state

P ¼ PðqðuÞ; TðuÞÞ;
e ¼ eðqðuÞ; TðuÞÞ;

ð6Þ

with T the absolute temperature.
It is worth noting that the Jacobian matrix of the advective flux

function and the relative eigen-structure are functions of some
thermodynamic relations, thus the Jacobian matrix and its eigen-
vectors should be computed for a generic gas, to avoid model-
dependent implementations, see Appendix A.

2.2. Thermodynamic models

In this work, three thermodynamic models are considered. The
first one is the classical model for the polytropic ideal gas. The
other two models are sufficiently accurate to describe dense gas
effects: the Peng–Robinson–Stryjek–Vera (PRSV) [7] and the
Span–Wagner (SW) [8] models.

2.2.1. Polytropic ideal gas
In the case of the polytropic ideal gas, it is possible to formulate

the pressure as a function of the specific variables e and q as
follows

Pðe;qÞ ¼ ðc� 1Þqe; ð7Þ

where c ¼ cp=cv is the specific heat ratio, and R is the gas constant.
Here it is always taken c ¼ 1:4.

Since in the Euler equations the actual unknown is the total
energy per unit volume (Et) and not the specif energy (e), it is con-
venient to rewrite the previous relation as

P ¼ PðuÞ ¼ ðc� 1Þ Et � kmk
2

2q

 !
; ð8Þ

where, with a slight abuse of notation, the same symbol has been
used to indicate the pressure as function of the q and e and as func-
tion of the conservative variables.
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