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a b s t r a c t

In this paper, we consider the numerical approximation of high order Partial Differential Equations (PDEs)
by means of NURBS-based Isogeometric Analysis (IGA) in the framework of the Galerkin method, for
which global smooth basis functions with degree of continuity higher than C0 can be used. We derive
a priori error estimates for high order elliptic PDEs under h-refinement, by extending existing results
for second order PDEs approximated with IGA and specifically addressing the case of errors in lower order
norms. We present some numerical results which both validate the proposed error estimates and high-
light the accuracy of IGA. Then, we apply NURBS-based IGA to solve the fourth order stream function for-
mulation of the Navier–Stokes equations for which we derive and numerically validate a priori error
estimates under h-refinement. We solve the benchmark lid-driven cavity problem for Reynolds numbers
up to 5000, by considering both the classical square cavity and the semi-circular cavity, which is exactly
represented by NURBS.

� 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The numerical approximation of high order Partial Differential
Equations (PDEs) represents a challenging task for the classical
Galerkin Finite Element methods due to the need to use trial and
test functions featuring high degree of continuity. This issue has
been addressed by adapting existing Finite Element schemes or
developing new numerical schemes. Specifically, the Discontinu-
ous Galerkin (DG) [51] and local Discontinuous Galerkin (LDG)
methods, firstly introduced in [18], were developed and adapted
for solving high order PDEs; see e.g. [44] for fourth order PDEs
and the references therein for more general cases. Analogously,
non-conforming discretizations have been used to achieve the
needed global regularity [15]; additionally, ad hoc techniques as
continuous/discontinuous finite element approximations for
fourth order PDEs have been developed in [25] in order to over-
come the issue of defining C1-continuous basis for arbitrary shaped
elements in dimensions greater than one. Currently, the golden
standard in the framework of the standard Galerkin method with
Lagrangian basis functions, consists in resorting to mixed formula-
tions [28]. Spectral or pseudo-spectral domain decomposition
techniques have also been used to approximate fourth order PDEs

resulting from the Navier–Stokes equations in stream function for-
mulation, see [46].

Isogeometric Analysis (IGA) is a recently developed computa-
tional methodology initiated with the work of Hughes et al. in
[19] aiming at closing the existing gap between Computed Aided
Design (CAD) and Finite Element Analysis (FEA). Based on the iso-
geometric paradigm, for which the same basis functions used to
represent the known geometry are then used to approximate the
unknown solution of the PDEs, IGA has been successfully used
for the numerical approximation of a wide range of problems pro-
viding accurate and efficient solutions. An extensive discussion on
the solution of both linear and nonlinear equations governing elas-
ticity or fluid dynamics problems by means of IGA is provided in
[20]. Moreover, IGA provides advantages in the numerical approx-
imation of high order PDEs within the framework of the standard
Galerkin formulation, since in IGA globally smooth basis functions
can be eventually used. In particular, we refer to NURBS-based IGA,
due to the large use of NURBS (Non-Uniform Rational B-Splines)
[47] within the CAD technology, and above all, for the mathemat-
ical properties of these basis functions. We observe that, besides
the possibility of offering simplified refinements procedures,
NURBS allow to exactly represent some common geometries in
engineering design, e.g. conic sections.

One of the major features of NURBS, which allows efficient
numerical approximations of high order PDEs in the framework
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of the Galerkin method, consists in the fact that NURBS basis func-
tions can be globally Ck-continuous in the computational domain,
with k P 0. This property allows a direct discretization of the weak
form of the problem without the need to resort to mixed formula-
tions, as typically is the case of FEA. In this respect, NURBS-based
IGA has already been successfully used to solve high order PDEs.
In [35,41] the fourth order Cahn–Hillard equations have been
solved, while in [9,22,37] high order phase field models have been
used for fracture modeling, topology optimization, and crystal
growth, respectively. Similarly, in the field of Fluid Dynamics prob-
lems, the isothermal Navier–Stokes–Korteweg equations, which
model isothermal vapor-liquid phase transitions, have been solved
e.g. in [36]. In [6,7] structural problems for shell and plates have
been solved with IGA, specifically Kirchhoff–Love models. In [2] a
stream function, high order formulation has been used to solve pla-
nar elastic problems within the IGA framework, for which an esti-
mation of the convergence rates of the errors with respect to the
mesh size has been performed numerically. However, despite a sig-
nificant numerical evidence, a complete, theoretical error analysis
for high order PDEs has not been performed yet, especially for
errors in lower order norms.

In this work, we provide a priori error estimates under h-refine-
ment for the NURBS-based IGA approximation of high order scalar
elliptic PDEs, extending the results presented in [3] for second
order PDEs. Specifically, we review some approximation results
presented in [3] and we focus on the derivation of the errors in
lower order norms by means of the standard Aubin–Nitsche’s argu-
ments [45,54] for linear high order scalar elliptic PDEs. The deriva-
tion of the error estimates in lower order norms follows an
approach similar to that of [54], for which the authors mention
the possibility of using Splines as basis functions; in this respect,
in the current work, we extend this concept to NURBS-based IGA.
We highlight the dependence of the convergence rates on the order
of the spatial differential operators, the regularity of the solutions,
and the degree of the basis functions used. The convergence rates
of the approximation errors of the IGA-Galerkin method with
respect to the global mesh size h are verified by means of numer-
ical tests with fourth and sixth order scalar PDEs.

As application, we consider the numerical approximation of the
Navier–Stokes equations in stream function formulation [50], for
which the incompressibility condition is fulfilled exactly in the
computational domain; in this case, the standard Galerkin formu-
lation yields a stable problem by construction. We derive a priori
error estimates, including those in lower order norms, under h-
refinement for the steady Navier–Stokes equations in stream func-
tion formulation, which represents a fourth order nonlinear elliptic
PDE. Similarly to the linear case, we validate the error estimates by
means of numerical tests. Then, we present a numerical study by
means of NURBS-based IGA for the benchmark lid-driven cavity
problem by comparing the results, up to Reynolds number 5000,
with those available in literature. Namely, for the lid-cavity prob-
lem in a square, we refer to [10], which considers a spectral Cheby-
chev collocation method, [26,27], where divergence-conforming
B-Splines discretizations in the framework of IGA are developed,
and [29], where a multigrid technique applied to finite difference
approximations of the vorticity-stream function formulation of
the Navier–Stokes equations is used. Moreover, by taking the
advantage of the exact representation of conic sections allowed
by NURBS, we present the numerical results for the lid-driven cav-
ity problem in a semi-circular domain, a configuration that is con-
sidered e.g. in [14,16,33,43].

The outline of this work is as follows. In Section 2, we recall the
basic notions of NURBS-based IGA in the framework of the Galerkin
method, specifically for high order scalar elliptic PDEs. In Section 3,
we derive the a priori error estimates for linear elliptic problems. In
Section 4, we present, in view of the numerical tests, some high

order PDEs and discuss the numerical approximation schemes. In
particular, we present the stream function formulation of the
Navier–Stokes equations and we derive a priori error estimates
for the steady case. Finally, in Section 5, we report and discuss
the numerical results. Conclusions follow.

2. NURBS-based Isogeometric Analysis

In this section, we recall the basic concepts of the B-Splines and
NURBS basis functions and geometrical representation. Then, in
Section 2.2, we briefly describe NURBS-based IGA in the framework
of the Galerkin method for the solution of high order PDEs. For an
extensive overview of B-Splines and NURBS, see for instance
[20,47]; for more details related to NURBS-based IGA, we refer
the interested reader to e.g. [19–21]. The notation used in this
work is similar to the one used in [3,5].

2.1. B-Splines and NURBS

A knot vector is a set of non-decreasing real numbers, represent-
ing coordinates in the parameter space. We indicate the knot vector
as N ¼ fn1; n2; . . . ; nnþpþ1g, where ni is the i-th knot, with the knot
index i 2 f1; . . . ;nþ pþ 1g characterized by the polynomial degree
p and the number of basis functions n defining the B-Splines basis,
respectively. By convention, we assume that n1 ¼ 0 and nnþpþ1 ¼ 1,
such that the parametric domain is defined as bX :¼ ðn1; nnþpþ1Þ ¼
ð0;1Þ � R. Knots may be repeated with the number of repetitions
indicating its multiplicity. A knot vector is said to be open if its first
and last knots appear pþ 1 times; specifically, in this work we con-
sider this case. In order to introduce the concept of mesh elements
in the parametric domain, we collect all the r distinct and ordered
knots of N, say fj for j ¼ 1; . . . ; r, into a vector Z ¼ ff1; . . . ; frg, with
f1 � n1 ¼ 0 and fr � nnþpþ1 ¼ 1. In particular, the one dimensional
mesh over bX, say Qh, is defined as the collection of the subdomains
bounded by two distinct knots, i.e.:

Qh :¼ fQ ¼ ðfj; fjþ1Þ : j ¼ 1; . . . ; r � 1g; ð2:1Þ
we indicate with ĥ :¼maxfĥQ : Q 2Qhg the global mesh size in the
parametric domain bX, where ĥQ :¼ diamðQÞ for all Q 2Qh. More-
over, since the multiplicity of the knots has important implications
in the regularity properties of the basis functions, an auxiliary vec-
tor is defined in relation with Z; specifically, we introduce the vec-
tor M :¼ fm1; . . . ;mrg, with mj P 1 representing the multiplicity of
the knot value fj, for j ¼ 1; . . . ; r.

By means of the Cox–de Boor recursion formula [20,47], univari-
ate B-Splines basis functions Ni : bX ! R for i ¼ 1; . . . ;n, are built as
piecewise polynomials of degree p with compact support over the
interval ðni; niþpþ1Þ. The basis functions are everywhere pointwise
non-negative and C1-continuous, except in the knot values fj,
where they are only Cp�mj -continuous. In particular, we define for
all j ¼ 1; . . . ; r, the smoothness integer parameters kj ¼ p�mj þ 1
such that 0 6 kj 6 p, we collect them in a vector K ¼ fk1; . . . ; krg,
and we introduce the minimum integer parameter
kmin :¼minj¼2;...;r�1fkjg. We observe that, according to the definition
of the vector K, in the knot fj, for j ¼ 1; . . . ; r, the basis functions are
Ckj�1-continuous.1 The B-Splines space built from the basis functions
in the parametric domain bX reads:

Sh :¼ spanfNign
i¼1: ð2:2Þ

By definition, the B-Splines in Sh are globally Ckmin�1-continuous. An
example of B-Splines basis functions of degree p ¼ 2, exhibiting dif-
ferent regularities across the knots, is provided in Fig. 1.

1 We remark that in this paper, we consider the minimum smoothness parameter
kmin to be larger than one unit with respect to the conventional notation of [19,20],
since we use the same notation of [3] for deriving a priori error estimates.
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