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a b s t r a c t

A comparative assessment of the Finite Point Method (FPM) is presented. Using a wing-fuselage config-
uration under transonic inviscid flow conditions as reference test case, the performance of the FPM flow
solver is compared with an equivalent edge-based Finite Element (FEM) implementation. Efficiency
issues have discouraged practical application of meshless methods in the past. Thus, a simplification of
the basic FPM technique is proposed in order to reduce the performance gap with respect to classical
grid-based algorithms. A comparative evaluation of the accuracy, computational cost and parallel perfor-
mance of the meshless implementation is carried out with the objective to assess the level of maturity of
the technique and identify improvements still required to tackle practical applications. The results
obtained show accuracy and performance of the core algorithm comparable to a conventional FEM imple-
mentation, thus removing a major obstacle for further developments of the FPM.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Numerous meshless techniques have been developed to solve
flow problems in the last two decades (see [1] for a comparative
analysis of some popular approaches). From the first applications
in the early 1990s to the latest, meshless techniques have been
successfully tested in a growing array of problems, and many po-
tential advantages over conventional discretization approaches
have been revealed. However, while most of the efforts focused
on new and improved developments, little progress has been done
in comparative studies with conventional methods to evaluate
accuracy, numerical implementation issues, computational effi-
ciency, robustness and other aspects of practical interest. This is
not a minor issue because very often the complexity, low efficiency
and lack of robustness found in meshless implementations negate
the specific advantages of the approach (e.g. simplified model
preparation and discretization, easy implementation of adaptivity
and domain deformation, etc.). Therefore, a satisfactory perfor-
mance of the basic technique is also required so that meshless
advantages can be exploited efficiently.

With this in mind, and with the purpose to gain some insight
into the real capabilities of meshless approach, a technique
known as Finite Point Method (FPM) [2–4] is compared in this
work with an equivalent classical Finite Element Method (FEM).

The comparative assessment is based on the inviscid solution of
a three-dimensional compressible aerodynamics problem and fo-
cuses, primarily, on determining if the FPM technique could be
competitive in terms of accuracy and computational cost. In order
to carry out the comparative study, an unstructured edge-based
FEM solver named PUMI [5] is employed as a reference. This
choice is motivated by the fact that PUMI and the adopted FPM
solver follow very similar solution strategies (apart from, of
course, the intrinsic differences due to the spatial discretization
methods). This allows for a more direct comparison of the core
algorithm properties eliminating effects arising from specific
implementation choices.

This paper is organized as follows. The flow solution method-
ologies adopted in the FPM and PUMI solvers are discussed and
compared in Section 2 and a simplification of the meshless tech-
nique, aimed to improve its efficiency, is presented in Section 3.
Then, a comparative assessment is carried out in Section 4 to
evaluate the solution accuracy, computational cost and parallel
performance of the FPM in relation to the FEM solver. Finally,
some considerations about point discretization in FPM are given
in Section 5 and the most relevant conclusions of this work are
outlined in Section 6.

2. Flow solution approaches in FPM and FEM

The strategies adopted in FPM and PUMI to solve the flow
equations follow similar lines. However, the numerical
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implementations differ as a consequence of specific features of the
spatial discretizations. These differences bring about advantages
and disadvantages of one method with respect to the other, con-
cerning both the computational requirements and the properties
of the discrete schemes thus derived. Hence, both solution ap-
proaches are analyzed and compared in this section to identify
meshless implementation issues affecting the FPM competitive-
ness. The flow equations to be solved are recalled first.

2.1. Governing equations

This work addresses inviscid aerodynamic problems governed
by the Euler equations. These equations can be written as

@U
@t
þ @Fk

@xk
¼ 0 ð1Þ

where U = [q,qui,qet]T is the conservative variables vector,
Fk = [quk,quiuk + dikp, (pet + p)uk]T is the k-component of the advec-
tive flux vector and q, p, et and ui denote the fluid density, pressure,
total energy and velocity components, respectively. The following
state relation for a perfect gas is adopted

p ¼ qðc� 1Þ½et � 1=2ukuk� ð2Þ

where c is the ratio of specific heats. The initial and boundary con-
ditions needed to solve Eq. (1) in an analysis domain X will be de-
scribed later in Section 4.1.

2.2. The meshless FPM solver

Suppose u(x) is an unknown function defined in an analysis do-
main X which is discretized by a set of n points xi. Let X be covered
by subsets of np points Xi (clouds of points) consisting of a point xi

called star point and a collection of surrounding points xj. Then, an
approximation of u(x) in Xi can be stated by

uðxÞ � ûðxÞ ¼ pTðxÞa ð3Þ

where p is a vector containing monomial basis functions and a is a
vector of unknown coefficients. In this work complete quadratic poly-
nomial bases are employed (e.g. pT(x) = [1,x,y,z,xy,xz,yz,x2,y2,z2] in
3D). Assuming np > m in Xi, the vector a can be determined by min-
imizing the following Weighted Least-Squares (WLSQ) functional

Ji ¼
Xnp

j¼1

wiðxjÞ½ûj �uj�
2 ¼

Xnp

j¼1

wiðxjÞ½pTðxjÞa�uj�
2 ð4Þ

in which uj = u(xj) are the values of the unknown function at each
point in Xi (nodal parameters), ûj indicates approximated values at
the same points and wi(xj) = w(xj� xi) is a compact support weighting
function centered on the star point of the cloud (Fixed Least-Squares
(FLS) [2]). Next, the approximation of the unknown function u and its
derivatives at the star point xi can be expressed by

ûi ¼ aijuj and
@ûi

@xk
¼ bk

ijuj 8j 2 Xi ð5Þ

where aij and bk
ij are approximation (metric) coefficients obtained

from the minimization of the functional (4) (see derivation details
in [6]).

The semi-discrete problem in FPM results from replacing the
continuous spatial variables in Eq. (1) by their discrete counter-
parts of Eq. (5). After some manipulation this yields [7]

dbUi

dt
¼ �2

X
j–i

bk
ij
eFk

ij � eFk
i

h i
8j 2 Xi ð6Þ

where bUi ¼ aijU j is a discrete approximation of the conservative
variables vector at xi, eFk

i ¼ FkðUiÞ is the kth component of the

advective fluxes and eFij is a numerical flux computed at the mid-
point of the ray (edge) connecting xi to point xj of Xi. Following
[8], the approximate Riemann solver of Roe [9] is adopted to define
the numerical flux. Thus,

eFk
ij ¼ 1=2 eFk

j þ eFk
i

� �
� 1=2jAn̂ Ui;Uj

� �
jðUj � UiÞn̂k

ij ð7Þ

where n̂ij is a unit vector in the direction of lij = xj � xi and
An̂ðUi;UjÞ
�� �� is the positive Roe matrix calculated in the same direc-
tion (see [10]). Aimed at increasing the spatial accuracy of Eq. (7),
the variables (Ui, Uj) are replaced by leftward and rightward high-
er-order reconstructions Uþi ;U

�
j

� �
obtained by limited MUSCL

extrapolation along lij. The van Albada limiter is adopted (cf. [8]
for implementation details).

A multi-stage time marching scheme is used to discretize Eq. (6)
in time. The problem solution is advanced from a time level tn to a
level tn+1 by

bUðmÞi ¼ bUðm�1Þ
i � amDtiRi Uðm�1Þ

j

� �
m ¼ 1; s ð8Þ

where bUð0Þi ¼ bUn
i and bUnþ1

i ¼ bUðsÞi . In Eq. (8), Ri(U) denotes the resid-
ual vector (right-hand side of Eq. (6)), am are suitable integration
coefficients [11], Dti is a local time increment and s is the number
of integration stages. Implicit residual smoothing [12] is employed
to accelerate the convergence in time of Eq. (8) and the diffusion
terms in Ri are frozen at the first integration stage to reduce the
computational cost.

It must be stressed that the FPM approximation does not inter-
polate nodal data (i.e. UðxjÞ – bUðxjÞ). Thus, taking into account that
R(�) in Eq. (8) is a function of Uj xj e Xi, the following linear system
has to be solved at each integration stageX
8j2Xi

aijUj ¼ bUi i ¼ 1;n ð9Þ

The solution is obtained using a small number of Gauss–Seidel iter-
ations with no significant additional computational cost.

2.2.1. Construction of local clouds and the numerical approximation
The procedure adopted to construct the local clouds of points

follows the general lines proposed in [8]. In brief, given a point dis-
cretization bounded by a triangulation with associated geometrical
data, for each star point xi in X a set of neighboring points within a
given radius is sought by using a spatial search algorithm based on
bins, see for instance [13]. This initial cloud is then filtered to
match boundary restrictions (if a ray from xi to another point xj

in the local cloud pierces a boundary, the point xj is discarded)
and, if the number of admissible points is lower than a given
threshold (about 120 in 3D), the search radius is increased and
the procedure starts again. Next, the admissible points are triangu-
lated and the first layer of Delaunay neighbors of xi is retained and
stored (this guarantees the necessary overlapping of the clouds
throughout the domain).

The numerical approximation is computed after generating the
layers of nearest neighbors. For each star point xi in X a local cloud
is initialized with its Delaunay neighbors. If the number of points is
lower than npmin (about 30 in 3D), further points are added from an
auxiliary neighbors list. This auxiliary list is constructed by adding
points according to layers and ordering them by increasing dis-
tances from xi. Then, the minimization problem is solved and a
quality check of the local approximation is performed, cf. [8]. If
the test is not successful, additional points are added from the aux-
iliary list while np 6 npmax (npmax = 50 is enough to achieve a prop-
er approximation in highly distorted clouds of points).

The procedure described above has proven reliable in general
problems in which the data available are the coordinates of
the points and a boundary grid delimiting the analysis domain.
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