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a b s t r a c t

This article describes numerical investigations of the flow and wave patterns under stationary or moving
submerged objects in a viscous fluid. To incorporate the effects of the free motion objects as well as the
free surface, the modified height function scheme is implemented to accurately capture the configura-
tions of free surfaces. For dealing with complex submerged objects in the fluid, a hybrid Cartesian/
immersed boundary method is adopted to allow imposition of the solid boundary conditions with a linear
interpolation approach. The considered physical model is developed for incompressible, unsteady free-
surface flows to satisfy the condition of volume conservation based on the staggered finite-difference
spatial discretization. Possible free-surface configurations are described by a high-order flux corrected
transport model to maintain the sharp interface and in the mean time to eliminate the surface numerical
oscillations. Finally several examples are provided to assess the performance of the developed numerical
model. Four numerical validated examples are used to respectively demonstrate the proposed schemes.
They are (1) the flow past a circular cylinder, (2) in-line oscillating circular cylinder in a fluid, (3) liquid
sloshing in a partially filled rectangular tank and (4) the oscillatory sloshing tank over a shaking table to
test the total volume preservation. In addition, two more numerical experiments are carried out to sim-
ulate (5) the free-surface flows with the embedded solid body subject to stationary horizontal cylinder
and (6) free-surface simulations induced by an oscillating moving object. Both tested cases show encour-
aging results as well by the present algorithm.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multi-dimensional numerical simulations of free-surface flows
such as earthquake excited fluid–structure interactions of dam res-
ervoir systems, tsunami propagation in sea water, and water wave
generated due to landslides are the common events for risk analy-
sis in engineering applications. To capture both the features of flow
and wave patterns with satisfactory resolution in space and time
domains, in general the Navier–Stokes equations are solved
numerically using a suitable discretization technique such as the
finite difference (FD), finite volume (FV), or finite element (FE)
methods. To develop a numerical model in relatively easy imple-
mentation, the FD discretization method is employed in this study
based on a staggered grid system. However the conservation of
physical quantities will also be involved in our numerical
computations.

Free-surface flows and moving boundary problems pose a chal-
lengeable issue for both theoretical and experimental studies [1,2].
It is one kind of fluid–structure interaction problems. The interac-
tions are nonlinear multi-physics phenomenon applied to a wide

range of engineering discipline. The hydrodynamic instabilities of
the wave motion as well as strong interface tearing and stretching
are rather difficult issues to analyze in the theoretical studies.
Hence the alternative capability of solution procedure is employed
to a significant extent by the numerical treatments. Accurate pres-
ervation of discontinuities at the free surface is particularly impor-
tant to the overall accuracy of the flow solver. Concerned
developments over decades have yielded two general categories.
They are the interface tracking methods and the interface captur-
ing methods. The representative approach of interface tracking
methods is the marker-and-cell (MAC) concept [3,4]. As far as
the interface capturing methods are concerned, there are two main
approaches used, namely the volume-of-fluid (VOF) method [5]
and the level set method (LSM) [6], which are among the most
commonly used schemes. The detailed literature reviews of these
two commonly used interface tracking [7] and interface capturing
methods [8,9] can be found in the references. To preserve the
advantages of the above-mentioned methods, this proposed
numerical model aims to satisfy the mass conservation possibly
and to overcome the discontinuous physical quantities near the
interface. However, since the target in this study is also to maintain
relatively easy implementation and good computational efficiency
on the treatment of free surface, the kinematic condition at the free
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surface is modified and advanced, namely the modified height
function (MHF) method. This method is one of the interface track-
ing approaches in which the height values at a set of horizontal
locations are recorded in a single value function during the tran-
sients. Memory requirements for a numerical solution are extre-
mely small. The method in this paper is implemented to predict
the configurations of the free surface without considering the li-
quid-breaking effects.

To describe the immersed body in the fluids, the immersed
boundary method (IBM) was widely utilized to handle the flow
field with complex geometries in the computational fluid dynamics
(CFD). One of the numerical challenges in CFD is to deal with mov-
ing boundaries in the fluid. The technique was then proposed to
cope with the geometries undergoing arbitrary complex motion
and deformation [10–12], so that we can simplify grid generation
to fit a complex moving boundary. The main idea of the IBM is to
represent the effect of an embedded body within the fluid domain
by adding an equivalent body force in the governing equations.
However there is flow penetration often existing in the conven-
tional IBM results, especially for the non-slip boundary condition
on the immersed body. To avoid the problem, Wu et al. [13] devel-
oped a local domain-free discretization-immersed boundary meth-
od to accurately capture the immersed body. Until now, the
improvements of the IBM are consistently making progress [12].
In most instances, since the IBM did not coincide with the regular
fluid grids, a considerable number of contributions were derived to
improve the interpolation schemes for imposing the desired veloc-
ity with boundary conditions of immersed body.

In 1977, Mohd-Yusof [14] first suggested an alternative direct
forcing formulation for a specific case so that there was no need
to couple the effect of the fluid to the solid. They applied the direct
forcing only on the immersed boundary or inside the body, and the
interpolation scheme were implemented in the B-spline direction.
Fadlun et al. [15] reconstructed the velocity at the first grid point
external to the immersed boundary and developed a fully three-
dimensional immersed boundary model to treat the complex flow
with a moving boundary. The desired velocity is obtained from the
linear approximation of the velocity at the immersed boundary
and the second grid point external to the immersed body. Balaras
[16] proposed a simple interpolation scheme which the interpo-
lated direction was normal to the immersed body over a fixed
Cartesian grid. Gilmanov and Sotiropoulos [17] proposed a sec-
ond-order accurate, dual-time-stepping artificial compressibility
algorithm to investigate flow past an undulating fish-like body.
Uhlmann [18] incorporated Peskin’s regularized delta function
scheme into a direct-forcing formulation for a smooth transfer be-
tween Eulerian and Lagrangian representations. The numerical
simulation of the particle sedimentation was also carried out in
that study. Kim and Choi [19] even proposed a non-inertial-refer-
ence-based HCIB method to simulate a free falling sphere under
the gravitational field. A mixing linear and bi-linear interpolation
technique was further introduced to estimate the momentum forc-
ing on or inside an immersed boundary.

The issues still exist, however, the choice of interpolation direc-
tion is arbitrary and their use would be restricted to some specific
situations. On the basis of the developed numerical model in a rel-
atively easy implementation, the Balaras’ concept [16] is followed
in this paper. The employed technique combines the direct forcing
formulation concept and the interpolated scheme in a fixed grid is
known as the hybrid Cartesian/immersed boundary (HCIB) meth-
od. It provides the advantage of a simple mesh generation, as com-
paring to the other sophisticated boundary-fitted methods. The
basic concept of the HCIB method is to modify the entries of the
implicit matrix of the discretized momentum equations. This is
achieved by imposing the boundary conditions at the solid surface
at each time step. This method does not require a smaller

computational time step to satisfy the stability of the discrete-time
equation, and it holds regardless of free constants that makes the
derivation of forcing independent on the Reynolds number. This
concept also allows us to calculate flow around objects moving rel-
ative to the environments without additional difficulty. Recently,
Young et al. [20,21] applied this concept to investigate the fluid
and heat patterns in a moving two-roll mill model by using the
HCIB method. Xu [22] also extended the similar concept to develop
a pressure solver to handle two-fluid flow problem across the
interfaces with second-order accuracy. Now, the HCIB method is
employed in our study that the fluid grid is fixed throughout the
computation for an arbitrary moving immersed boundary during
the transients.

From the literature survey, it is investigated that the numerical
model seldom treats the complicated fluid–structure interaction
problem with moving boundaries over simple fixed grids. The nov-
elty of this paper is to combine the HCIB technique and the MHF
method together to simulate the free-surface flows interact with
the embedded stationary or moving objects. The HCIB technique
is applied to handle the moving boundaries in the fluids, while
the MHF is used to capture the evolution of free surface. The capa-
bility of the numerical model will be demonstrated through several
case studies.

2. Mathematical formulations of fluid motion with free-surface
effects

2.1. Governing equations

Consider an incompressible, viscous fluid occupying at an in-
stant time t and the domain X with a smooth boundary C. The
dimensionless Navier–Stokes equations in terms of the primitive
variables for the fluid flow are the mass conservation equation

r � u ¼ 0; ð1Þ

and the momentum conservation equation

@u
@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2u� gþ f; ð2Þ

in which u = (u,v) and p are the dimensionless velocity vector and
pressure, respectively; Re represents the Reynolds number; g is
the gravitational force; and f is the forcing function used to make
the fluid velocity to satisfy the desired boundary conditions.

In computations, to minimize the error from the convective
term and overcome the numerical oscillation, the balanced tensor
diffusivity term [23], Dt

2 un � rð Þ ðun � rÞun½ �, is added and used to
compensate the explicit discretization errors in time and thus the
convection term is corrected. This term is also regarded as an up-
wind technique. As a consequence, the operator splitting proce-
dures of the Navier–Stokes equations are summarized in the
following steps [20,21,24].

Step 1: Intermediate velocity

u� � un

Dt
¼ � un � r½ �un þ Dt

2
ðun � rÞ un � rð Þun½ � þ 1

Re
r2un � gþ f:

ð3Þ

Step 2: Pressure calculation
r2pnþ1 ¼ 1=Dt r � u�ð Þ: ð4Þ

Step 3: Velocity correction
unþ1 ¼ u� � Dtðrpnþ1Þ: ð5Þ

In which u� represents the intermediate velocity vector.
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