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a b s t r a c t

In this paper, a new upwind technique for local radial basis function differential quadrature (LRBF-DQ)
method is proposed to solve the convection-dominated flow problems. By using a modified Euclidean
distance function according to the local flow direction and the value of parameter that controls the
convection effect, the local support in the formulation of LRBF-DQ can be chosen in a way shifting
towards the upstream direction to form a comet-like shape. The upwind effect is therefore naturally
incorporated when computing the weighting coefficients for LRBF-DQ method. The capability of the
proposed method is examined by solving two-dimensional convection–diffusion equation with various
Peclet numbers and magnetohydrodynamics (MHD) problems with very high Hartmann numbers. The
results show that remarkable improvement of accuracy can be achieved by the current upwind-based
LRBF-DQ method than the conventional ones.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Convection is a common mechanism occurring in the flow
problems of various fluids. In many interdisciplinary science and
engineering applications, the problems are dominated by consider-
able convection effect, which are very challenging in the point of
view of numerical simulation since dense grid resulting large
computational cost is needed to eliminate the convection effect
on the grid scale. Spurious oscillations may occur with insufficient
computational nodes or unsuitable numerical schemes [1]. The
development of efficient, reliable, and accurate numerical methods
for the simulation of convection-dominated flows is therefore a
crucial subject when studying the relevant problems. Considerable
works of upwind schemes for finite difference method (FDM) and
finite volume method (FVM) had been developed for the numerical
solutions of convection-dominated flows, such as first order up-
wind difference (FOU) [2], second order upwind difference (SOU)
[3], and quadratic upstream interpolation for convective kinetics
(QUICK) [4] to name a few. On the other hand, stabilized finite
element method (FEM) using modified weighting functions in the
Petrov–Galerkin formulations such as the streamline upwind
Petrov–Galerkin method (SUPG) [5] and the application of
hierarchical basis functions [6] were developed to study the
convecting flows. However, the accuracy and stability of the
aforementioned mesh type numerical methods rely on good mesh

quality. The generation of mesh with good quality is in general not
a trivial issue, especially for complex boundary geometry in three
dimensions. Development of meshless numerical methods to the
numerical solutions of partial differential equations thus attracted
considerable interests over the past decades [7–9].

In this paper, the LRBF-DQ method introduced by Shu et al. [10],
which is a meshless numerical method and can be easily imple-
mented to solve problems in arbitrary-shaped domain, is adopted
to solve the convection-dominated flow problems. In the formula-
tion of LRBF-DQ, the radial basis functions (RBFs) [11] are em-
ployed as the basis functions to compute the weighting
coefficients for the differential operators, which extends the idea
of original differential quadrature (DQ) method proposed by Bell-
man and Casti [12] and Bellman et al. [13] that can only be applied
to problems in Cartesian grid. LRBF-DQ has been applied to solve
inviscid compressible flows [14], natural convection [15], three-
dimensional incompressible viscous flows [16,17], long waves in
shallow water [18], the vibration analysis of membranes [19] and
heat conduction problems [20,21], which show the capability of
LRBF-DQ for solving various kinds of engineering problems.

In conventional LRBF-DQ proposed by Shu et al. [10], the local
support of a computational node is chosen as a circular domain
centered at the reference node. The weighting coefficients of differ-
ential operators computed by the neighbor nodes within the local
support thus cannot properly distinguish the influence from up-
stream or downstream. In the current paper, the local support of
a reference node is chosen in a way shifting towards the upstream
direction to form a comet-like shape, whose concept is similar to

0045-7930/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.10.032

⇑ Corresponding author. Tel.: +886 2 2362 6114.
E-mail address: dlyoung@ntu.edu.tw (D.L. Young).

Computers & Fluids 89 (2014) 157–166

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/ locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2013.10.032&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.10.032
mailto:dlyoung@ntu.edu.tw
http://dx.doi.org/10.1016/j.compfluid.2013.10.032
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


the upwind schemes developed in FDM and FVM. This can be done
by modifying the Euclidean distance function according to the local
flow direction and the value of parameter that controls the convec-
tion effect when sorting the nearest neighbor nodes. The resulted
shape of shifted local support thus depends on the strength and
direction of convecting flow and exhibits the upwind effect
naturally. It is mentioned in [14], an upwind LRBF-DQ method is
proposed to simulate inviscid compressible flows by evaluating
the flux at the mid-point between the reference node and its sup-
porting node through approximate Riemann solvers.

The proposed upwind-based LRBF-DQ is validated by solving
convection–diffusion equation with various Peclet numbers and
MHD problems with very high Hartmann numbers in two dimen-
sions. MHD flow problems have been solved by many numerical
methods such as FEM [22,23], element-free Galerkin (EFG) method
[24,25], exponential high-order compact (EHOC) difference scheme
[26], meshfree point collocation method [27], and DQ method
[28,29] with Hartmann number varying from 5 to 106. The
Hartmann number in MHD flow problems is similar to the Peclet
number in convection–diffusion equation, which controls the
strength of the convection effect. Therefore, MHD problems are
suitable to examine the capability of the numerical method when
handling strong convecting flows.

The organization of the paper follows. Brief introduction to
the formulation of LRBF-DQ as well as the proposed upwind
scheme are presented in the next section. The governing
equations of the problems are given in Section 3. In Section 4,
the current upwind-based LRBF-DQ method is applied to solve
two-dimensional convection–diffusion and MHD flow problems
with various Peclet or Hartmann numbers, respectively. The
results are compared with those solved by other methods or
analytical solutions. Finally, remarks and discussions are drawn
in Section 5.

2. Numerical method

2.1. Formulation of LRBF-DQ method

In this section, a brief introduction to the formulation of LRBF-
DQ method is given. For detailed descriptions, the reader is re-
ferred to [10]. The essential idea of LRBF-DQ method is to approx-
imate the function derivatives at a reference node by the linear
weighted sum of the function values at neighbor nodes within
the local support domain, which is an extension of the DQ method
by Bellman and Casti that approximates the derivatives by the
function values at all nodes in the global domain. The mth order
derivative of a function f ðxÞ with respect to x at x ¼ xi for LRBF-
DQ method can be expressed as

f ðmÞx ðxÞjx¼xi
¼
XNL

j¼1

wðmxÞ
ij f ðxjÞ; for i ¼ 1; . . . ;N; ð1Þ

where NL is the number of nodes within local support of reference
node xi; N is the number of global nodes, and wðmxÞ

ij are the
weighting coefficients for mth order derivative along x-direction.
In the present LRBF-DQ, the unknown function f ðxÞ is approxi-
mated by the linear combination of the multiquadrics (MQs)
[30], since it is the most accurate one among various RBF-based
interpolation methods [31]. The MQ function centered at xj can
be expressed as

/jðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jx� xjj2 þ c2

q
; c > 0; ð2Þ

with c denoting a shape parameter. According to the principle of
superposition, all the basis functions should satisfy the relation de-
scribed in Eq. (1) and can be expressed in matrix form as

@ðmÞ

@xðmÞ

/1ðxiÞ
/2ðxiÞ

..

.

/NL
ðxiÞ

2
66664

3
77775 ¼

/1ðx1Þ /1ðx2Þ � � � /1ðxNL Þ
/2ðx1Þ /2ðx2Þ � � � /2ðxNL Þ

..

. ..
. . .

. ..
.

/NL
ðx1Þ /NL

ðx2Þ � � � /NL
ðxNL Þ

2
666664

3
777775

wðmxÞ
i1

wðmxÞ
i2

..

.

wðmxÞ
iNL

2
666664

3
777775
;

ð3Þ

for i ¼ 1; . . . ;N. Therefore the weighting coefficients for the mth
order derivative along x direction of the function f ðxÞ at point xi

can be obtained by solving the above linear equations. Similarly,
the weightings for the derivatives along other directions can be
obtained. To satisfy the zeroth-order consistency condition, a
constant function as an additional basis function is considered,
which results in a condition

PNL
j¼1wij ¼ 0 and is used to determine

a suitable shape parameter. In practice, the weightings are com-
puted using different c in a feasible range. The one with the mini-
mum residual will be chosen and is expected to satisfy the
zeroth-order consistency condition as possible.

2.2. Upwind scheme for LRBF-DQ method

Now we turn the attention to the proposed novel upwind
scheme for LRBF-DQ method. In the original LRBF-DQ method
[10], the local support of a reference point is chosen as a circular
domain centered at that point. A practical way is to choose the
NL nearest neighbor points as the supporting nodes. The computed
weighting coefficients cannot distinguish the influence from
upstream or downstream. When the downstream boundary condi-
tion exhibits a severe change, strong convection effect may result
spurious oscillations.

Here we adopt an idea similar to that developed in FDM or FVM,
the local support of a reference node is shifted towards the up-
stream direction and its shape is modified to a comet-like geome-
try. The modification of the geometry should satisfy physical
parameter that controls the strength of convection. This can be
done by using a modified Euclidean distance function defined as

R� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðR sin hÞ2 þ ðwRR cos hÞ2

q
; ð4Þ

where R ¼ jxi � xj is the Euclidean distance between x and the ref-
erence node xi; h is the angle between the flow velocity u and
r ¼ xi � x as depicted in Fig. 1, and wR is a weighting factor denoted
by

wR ¼ ðlog FÞ�sgnðr�uÞ ð5Þ

with F denoting the physical parameter controlling the convection
strength and the sign function defined as

Fig. 1. Schematic sketch of the modified Euclidean distance function.
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