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a b s t r a c t

The study of the rapid free-surface granular flows that are driven under gravitational acceleration has
attracted much attention in recent years. This is not only because such flows occur in many industrial
and natural examples, but also because their transport mechanisms can be observed through small-scale
lab experiments, modeled with continuum theories, and simulated by computers. When granular parti-
cles rapidly propagate around obstacles, the resulting phenomena – shock waves, particle free regions or
granular vacua, expansion fans and stagnation zones – are of particular theoretical and practical impor-
tance. In this paper we develop a computational method for a hydraulic-type avalanche model that is able
to simulate such phenomena. It numerically solves the avalanche model over a structured grid by includ-
ing the topography of the obstacles. Different finite-difference TVD methods based on the non-oscillatory
central (NOC) scheme are tested in computation to compare the resolution of the shock waves when
granular flows propagate against an oblique wedge. This is also involved in the choice of the limiters,
but which are shown rather insensitive in such computations. A level set formulation is coupled into
the governing equations to follow the evolution of the boundaries of the granular vacua. It is tested in
a situation when granular particles flow around a circular cylinder, where bow shock waves, granular
vacua, expansion fans and stationary zones are all captured in the computation. These results agree well
and consistently with the laboratory experiments.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Gravity-driven granular avalanches occur over a vast range of
scales both in industry and in the natural environment. Snow ava-
lanches, volcanic flows, rock-falls, pyroclastic flows, lahars and
debris-flows are examples of natural hazards in geophysical scales,
and smaller-scale examples are usually seen in industrial processes
such as in the mining, bulk-chemical, pharmaceutical and food
industries. In recent years the study of granular flows has attracted
much attention because important phenomena such as shock
waves, expansion fans, stationary zones and granular vacua are of-
ten observed particularly when a granular avalanche flows past an
obstacle or over complex topography such as mountainous
terrains. The study of these phenomena are of particular impor-
tance not just for gaining insight into associated theories and
methodological approaches, but for practical uses as well. For
example, knowing the avalanche thickness jump across a shock
wave generated around a defensive infrastructure may determine
a minimum requirement of the height of such infrastructure for
stopping or diverting the avalanche from overtopping it; knowing

the shape of a granular vacuum formed behind an obstacle could
suggest the effectiveness of it as to divert the incoming avalanche.

The concept of granular shock wave, or granular jump, was ini-
tiated by Savage [23] when he observed a stationary jump up-
stream of a splitter plate. Gray and Hutter [7] studied upslope
traveling normal shocks in pattern formation experiments on
heaps and in rotating drums. Gray et al. [9] showed that the trav-
eling normal shock was the granular equivalent of a hydrodynamic
bore. Their experiments showed that the simple hydraulic analysis
was accurate to within 10% of the observed shock heights and
propagation speeds. Stationary oblique shocks were also observed
in [9] when granular avalanches were deflected by wedge shaped
obstacles. These studies suggest that the hydraulic type avalanche
models may be effective to compute shallow granular flows. Such
models were first proposed in Russia in the 1960s [11,14,5] to
model snow avalanches, but their work did not catch on in the
west till recently. Gray et al. [9] generalized the hydraulic model
to investigate granular flows past obstacles that have sloped sides
or walls normal to the chute, but the effect of the obstacles was
treated as topographic gradients and incorporated into the source
terms.

Nowadays, numerical computations of shock waves have built
on much more sophisticated schemes. In the 1980s the concept
of TVD (Total Variation Diminishing) [12] was introduced in shock
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capturing techniques to replace traditional high-resolution
schemes. Such numerical approaches can be classified into two
types: the upwind TVD schemes based on the Godunov method;
and the central TVD schemes based on the Lax-Friedrichs method.
The upwind TVD schemes have been widely used in the computa-
tional gasdynamics, where the approximate Riemann solvers are
applied to follow the characteristics. The study of the central
TVD schemes did not become popular until Nessyahu and Tadmor
[19] developed a second-order Non-Oscillatory Central (NOC) TVD
scheme in 1990 and this was followed by a number of improve-
ments (see e.g. [1,13,15,16,28]). The central TVD schemes are re-
garded as a universal approach as they require no details of the
characteristics and the Riemann solvers, and are applied in recent
years to simulate rapid free-surface granular flows. Gray et al. [9]
used a TVD Lax-Friedrichs scheme to simulate upslope traveling
normal shocks. Tai et al. [27] used the NOC scheme to simulate
the evolution of one-dimensional parabolic-cap similarity solu-
tions [22]. Denlinger and Iverson [4] applied a Riemann solver
algorithm to simulate variably-fluidized granular flows across
three-dimensional terrains. Pitman et al. [21] used an adaptive
mesh Godunov solver to simulate granular avalanches and land-
slides over a realistic terrain from digital elevation model data. In
particular, Gray et al. [9] used the same NOC scheme as [27] to sim-
ulate the evolution of two-dimensional avalanches past various
shaped obstacles, where both attached and detached shocks were
captured. In dealing with the obstacles, they explicitly incorpo-
rated the topography of the obstacle into the source terms. Gray
and Cui [10] applied classical oblique shock theory, small scale
experiments and numerical simulations to investigate how weak,
strong and detached shock waves were generated by a wedge.
The same numerical method was further used by Cui et al. [3] to
capture shocks for snow avalanches on realistic topography from
a deflecting dam in Flateyri, Iceland, where good order of magni-
tude agreement was shown between the simulation and field
observation for the avalanche track, the avalanche thickness across
the shock and the run-out region.

As an avalanche propagates past an obstacle a particle-free re-
gion – a granular vacuum – is often generated at the lee-side.
The vacuum boundary marks the position where the avalanche
thickness h first approaches zero and it is of considerable interest
to accurately track the boundary from the computation. Tai et al.
[27] used marker points to track the moving front in their one-
dimensional simulations, but would find it infeasible if simulating
two-dimensional flows. Here we intend to develop a level set for-
mulation that fits naturally into the governing equations. While
many contributions have been devoted into the level set methods
(e.g. [20,25,2,17,18,24,26]), our approach is mainly based on the
idea of Mulder et al. [18] who embedded a level set formulation
to the system of conservation laws for compressible gas dynamics.
They found that the coupling of the level set in the governing equa-
tions works better when there is a jump in the normal velocity
across the interface. We shall experiment with a similar approach
in our computation for the flow around a circular cylinder where a
granular vacuum forms.

2. Governing equations

2.1. Granular avalanche model

To simulate granular avalanches around obstacles a dimension-
less hydraulic-type model proposed in [5,9,11,14] is adopted. This
model is set up in a fixed Cartesian coordinate system, namely,
Oxyz, where the x�axis is along the downslope direction at an
inclination angle f to the horizontal, the y�axis is along the lateral
cross-slope direction, and the z�axis points upward according to

the right-hand rule. The velocity u has components ðu;v ;wÞ in each
of these directions. The depth-integrated non-dimensional mass
and momentum balances are thus given as

ðhÞt þ ðhuÞx þ ðhvÞy ¼ 0; ð1Þ

ðhuÞt þ ðhu2Þx þ ðhuvÞy þ
1
2

h2 cos f

� �
x

¼ hSx
; ð2Þ

ðhvÞt þ ðhuvÞx þ ðhv2Þy þ
1
2

h2 cos f

� �
y

¼ hSy
; ð3Þ

where h is the thickness, f is the inclination angle of slope, and the
subscripts ‘‘x00 and ‘‘y00 denote the derivatives, respectively. The
source terms of the right-hand side are

Sx ¼ sin f� lðu=jujÞ cos f; ð4Þ
Sy ¼ �lðv=jujÞ cos f; ð5Þ

where sin f represents the downslope component of the gravita-
tional acceleration and l is the coefficient of the basal Coulomb fric-
tion. Note, the above equations are based on a downslope basal
topography of flat surface. Gray et al. [8] extended these equations
over complex basal topography by including the variation of the ba-
sal surface in both downslope and lateral directions, which were
successfully used by Cui et al. [3] for simulating snow avalanche
development over a real geophysical terrain in Flateyri of Iceland.

The governing equations (1)–(3) are formulated in non-dimen-
sional form where the variables have been non-dimensionalized by
the scalings

~h ¼ Lh; ð~x; ~yÞ ¼ L ðx; yÞ; ð~u; ~vÞ ¼
ffiffiffiffiffi
Lg

p
ðu; vÞ; ~t ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
ðL=gÞ

p
t; ð6Þ

where the tildered variables are dimensional and g is the constant
of gravitational acceleration. The velocity scaling

ffiffiffiffiffi
Lg

p
is based on

that of Savage and Hutter [22] who identified that the motion of
the avalanche was primarily governed by free-fall of the grains
rather than surface gravity waves, which would imply the scalingffiffiffiffiffiffiffi

Hg
p

. Savage and Hutter’s scaling identifies that the dominant bal-
ance in equation (2) is between the acceleration and the source
terms. The depth-averaged pressure, which is multiplied by a factor
e ¼ H=L, plays a lesser important role, while higher order terms are
neglected (see e.g. [8,9]). Thus equations 1, 2 to 3 imply that e ¼ 1.

In our study, we let L ¼ 0:03 m, the diameter of the circular cyl-
inder used in the experiment, for all length scalings. It follows that
the velocities are scaled by

ffiffiffiffiffi
gL

p
¼ 0:54 ms�1 and time is scaled byffiffiffiffiffiffiffiffi

L=g
p

¼ 0:055 s. The Froude number

Fr ¼ j�uj=c; ð7Þ

is defined as the ratio of the flow speed j�uj to the wavespeed
c ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h cos f

p
. The avalanche is described as being supercritical if

Fr > 1, critical if Fr ¼ 1 and subcritical if Fr < 1. Note that the equa-
tions , 2 to 3 are closely linked to the equations of isentropic gas
dynamics with equivalent specific heat ratio c ¼ 2, where the role
of the Froude number replaces that of the Mach number. The major
difference is the presence of the source terms (4) and (5). One of the
important properties of the gas dynamics equations is that the
momentum equations are trivially satisfied, and the velocity is arbi-
trary, when the gas density is identically zero. Despite the presence
of the source terms, the avalanche equations have the same degen-
eracy, indicating that grain free regions, or granular vacua, arise
naturally from the theory.

2.2. Level set representation

We intend to construct an equation for a function /ðx; tÞ which
contains the embedded motion of the two-dimensional hypersur-
face CðtÞ as the level set / ¼ 0. Let xðtÞ be the path of a point on
the propagating front then
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