
Parallel computing strategy for a flow solver based on immersed
boundary method and discrete stream-function formulation

Shizhao Wang, Guowei He, Xing Zhang ⇑
LNM, Institute of Mechanics, Chinese Academy of Sciences, Beijing 100190, China

a r t i c l e i n f o

Article history:
Received 3 February 2012
Received in revised form 26 August 2013
Accepted 2 September 2013
Available online 11 September 2013

Keywords:
Parallelization
Domain decomposition
Massage passing interface
Immersed boundary method
Discrete stream-function formulation

a b s t r a c t

The development of a parallel immersed boundary solver for flows with complex geometries is presented.
The numerical method for incompressible Navier–Stokes equations is based on the discrete stream-
function formulation and unstructured Cartesian grid framework. The code parallelization is achieved
by using the domain decomposition (DD) approach and Single Program Multiple Data (SPMD) program-
ming paradigm, with the data communication among processes via the MPI protocol. A ‘gathering and
scattering’ strategy is used to handle the force computing on the immersed boundaries. Three tests, 3D
lid-driven cavity flow, sedimentation of spheres in a container and flow through and around a circular
array of cylinders are performed to evaluate the parallel efficiency of the code. The speedups obtained
in these tests on a workstation cluster are reasonably good for the problem size up to 10 million and
the number of processes in the range of 16–2048.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, there has been an increasing popularity of im-
mersed boundary (IB) methods [1,2]. The reason behind this trend
is that the meshes are not required to conform to the body surfaces.
In the IB methods, appropriately defined forcing terms are added to
the governing equations to mimic the effect of the immersed body
on the motion of the fluid. The use of non-body-fitted meshes can
significantly reduce the time and labor involved in meshing com-
plex geometries. IB methods have now become a powerful tool
for simulating flow involving complex, moving (or morphing)
bodies. Comparing with the body-fitted-grid methods, IB methods
usually require larger number of mesh points to achieve a proper
resolution near the boundaries. This noticeable demerit is due to
the use of simple Cartesian grid in the majority of IB methods. Some
measures have already been taken to mitigate the situation, such as
the use of stretched mesh, locally-refined mesh [3] or curvilinear
mesh[4,5]. Although these strategies aforementioned can reduce
the total mesh number to some extent, several million grid-points
are still required in some high-fidelity 3D simulations (even for
laminar flows at moderate Reynolds numbers).

With the continued rapid growth in computational power,
larger and larger simulations are now conducted to study the
phenomena in complex flow configurations. At the same time,
massively parallel distributed-memory platforms have prompted
new programming paradigms. To facilitate more efficient use of

these computational resources in performing high-fidelity simula-
tions, we need to investigate the parallelization strategy in addi-
tion to the discretization schemes and solution algorithms. Here,
‘efficient’ could refer to the ability to solve a problem of given size
as fast as possible, but it could also mean that the overall time to
solve the problem remains (nearly) constant when the problem
size and the number of processors are increased at the same rate.
The former definition relates to the strong scalability of a parallel
implementation, whereas the latter requires weak scalability. In
the present work, both types of scalability will be evaluated but
the focus is put on the strong scalability property of the code.

The parallelization strategies under investigation in this paper
include the following two aspects: (a) parallelization of the basic
Navier–Stokes solver; (b) parallelization of the forcing computation
near the immersed boundary. For the basic flow solver, most of the
existing numerical models for the solution of the Navier–Stokes
equations are based on Finite Difference Method (FDM), Finite
Element Method (FEM) or Finite Volume Method (FVM). The space
can be discretized with structured or unstructured grids, and the
time with explicit or implicit techniques. The parallelization strat-
egy differs greatly among different data structures and time
advancing schemes. Numerical methods which depend on struc-
tured grids (such as FDM) and an explicit time discretization have
certain advantages concerning the parallelization. The parallel
implementation is easier and higher parallel efficiencies can be
expected when compared with other candidates.

In the present work, we first describe the parallelization a
sequential Navier–Stokes solver which is based on the discrete
stream function formulation for incompressible flows. This

0045-7930/$ - see front matter � 2013 Elsevier Ltd. All rights reserved.
http://dx.doi.org/10.1016/j.compfluid.2013.09.001

⇑ Corresponding author. Tel.: +86 10 82543929; fax: +86 10 82543977.
E-mail address: zhangx@lnm.imech.ac.cn (X. Zhang).

Computers & Fluids 88 (2013) 210–224

Contents lists available at ScienceDirect

Computers & Fluids

journal homepage: www.elsevier .com/locate /compfluid

http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2013.09.001&domain=pdf
http://dx.doi.org/10.1016/j.compfluid.2013.09.001
mailto:zhangx@lnm.imech.ac.cn
http://dx.doi.org/10.1016/j.compfluid.2013.09.001
http://www.sciencedirect.com/science/journal/00457930
http://www.elsevier.com/locate/compfluid


algorithm is essentially implicit and is currently implemented on
an unstructured Cartesian grid. Although structured grid possesses
the advantage of coding simplicity, fully unstructured data struc-
ture allows an easy treatment of anisotropic local mesh refinement
(esp. hanging-nodes) [6]. Of course, the unstructured data manage-
ment unavoidably raises the complexity of parallelization. Many
references on parallelization of implicit unstructured solvers can
be found in the published literatures, such as [7–10] on FVM,
[11] on FEM and [12–15] on Control Volume Finite Element Meth-
od (CVFEM) (which is a mixture of FVM and FEM), just to list a few.
The implicit parallel solution algorithm for Navier–Stokes equa-
tions in this work is based on the Domain Decomposition (DD) ap-
proach, which is preferable on a computer system with distributed
memory. When applying the DD strategy, the sequential algorithm
of discretization is mainly kept and each processor computes part
of the basic tasks such as matrix–vector multiplication with its as-
signed data and the data exchange only occurs at the boundaries
among sub-domains.

The existence of immersed boundaries (esp. moving ones) fur-
ther complicates the parallel implementation. Intuitively, it is most
reasonable to have a given processor deal with the ‘markers’
(Lagrangian points) which are currently located within its local
sub-domain. However there are some open questions related to
this strategy of parallelization, such as the load-balancing issue
due to the unequal distribution of ‘marker’ points across proces-
sors; communication overhead produced by shared processing
and handing-over of points among processes. These issues are
seldom addressed in the literatures. In a report by Uhlmann [16],
a ‘master and slave’ strategy is proposed for the simulation of
freely-moving particles in fluid using the IB method. In this
strategy, one ‘master’ processor is assigned to each particle for
the general handling of it. If necessary, there will be a number of
additional processors (‘slaves’) assigned to the particle to help
the ‘master’. Recently, Wang et al. [17] proposed a different meth-
od to handle the situation when particle crosses the boundaries of
sub-domains. Preliminary 2D computations have demonstrated
that the parallel efficiency and speedup in these two studies above
are acceptable. In the present work, we employ a ‘gathering-
and-scattering’ strategy. At each time step, a master processor is
exclusively responsible for computing the force and then the result
is scattered the slave processors on which the Navier–Stokes equa-
tions are solved in parallel. This strategy circumvents some diffi-
culties aforementioned and is very easy to program.

The organization of the paper is as follows. Numerical method
and data structures are presented in Section 2. Basic strategies em-
ployed in the parallelization will be discussed in Section 3. Valida-
tions and parallel performance tests will be presented in Section 4.
Finally, the discussion and conclusions are given in Section 5.

2. Algorithm description

A brief introduction to the numerical methodology and data
structure is given here to make the paper as self-contained as pos-
sible. For a more complete description, please refer to [18].

2.1. Immersed boundary method in discrete stream-function
formulation

The three-dimensional incompressible viscous flow is consid-
ered in the present work. The governing equations of the flow
can be written as:

@u
@t
þ u � ru ¼ �rpþ 1

Re
r2uþ f; ð1Þ

r � u ¼ 0; ð2Þ

where u and p are the velocity vector and pressure respectively. f is
the force representing the effect of the immersed body on the flow.
The Reynolds number is defined as Re = UL/m, where U and L are the
reference velocity and length respectively, and m is the kinematic
viscosity of the fluid. The discretized form of Eqs. (1), (2) can be ex-
pressed by a matrix form as

A G
D 0

� �
qnþ1

p

� �
¼

rn

0

� �
� bc1

bc2

� �
þ

~f
0

" #
; ð3Þ

where q, p, and ~f are the discrete velocity flux, pressure, and body
force, respectively. The discrete velocity u, is related to q by multi-
plying the cell face area. A, G and D are the implicit operator, gradi-
ent operator and divergence operator respectively. In addition, the
negative transpose of the divergence operator is the gradient oper-
ator, i.e. G = �DT. rn is the explicit right-hand-side term of the
momentum equation. bc1 and bc2 are the boundary condition vec-
tors for the momentum and continuity equation respectively.

The discrete stream function (null-space) approach is a numer-
ical method for solving Eq. (3) proposed by Chang et al. [19]. Unlike
the classic fractional step method, in this method the divergence-
free condition is satisfied to machine precision and there are no
splitting errors associated with it. In the discrete stream function
approach, a discrete stream-function s is defined, such that q = Cs,
where C is the curl operator (which is a non-square matrix). This
matrix is constructed in such a way that D and C enjoy the relation
DC = 0, thus the incompressibility condition is automatically
satisfied.

In this approach, another type of curl operator R, which is called
the rotation operator, is also defined. The matrix R and matrix C
enjoy the relation R = CT. By pre-multiplying the momentum equa-
tion with R, the pressure can be eliminated and the system of Eq.
(3) is reduced to a single equation for s at each time step

CT ACsnþ1 ¼ Rðrn � bc1Þ þ R~f : ð4Þ

The matrix CTAC is symmetric, positive-definite and thus can be
solved using the Conjugate Gradient (CG) method.

The forcing term f on the right hand side of Eq. (1) is computed
in an implicit way. Within one step of time advancing (from n to
n + 1), this procedure can be summarized as the following four
sub-steps.

(i) A ‘predicted’ stream function is computed with the forcing at
time step n and the velocity vectors are reconstructed using
the ‘predicted’ stream function.

(ii) A ‘force correction’ is applied to achieve the desired velocity
on the boundary. In this paper, we follow a similar proce-
dure as that in [21] in computing the force. Mathematically,
the ‘force corrections’ at the Lagrangian points are computed
using the formula

XM

j¼1

X
x

dhðx� XjÞdhðx� XkÞDs2h3

 !
DFðXjÞ

¼
~Unþ1ðXkÞ � ~U�ðXkÞ

Dt
; ð5Þ

where ~Unþ1 and ~U� are the desired and ‘predicted’ velocities at
the Lagrangian points respectively; dh is the regularized
Delta function; h and Ds are the grid sizes of the Euler and
Lagrangian points respectively; Dt is the time step. ~U� is
evaluated by

~U�ðXkÞ ¼
X

x

~u�ðxÞdhðx� XkÞh3
; ð6Þ

where ~u� is the ‘predicted’ velocity computed in step (i). By
definition, the force correction Df at the Eulerian grid points
can be computed using the transformation

S. Wang et al. / Computers & Fluids 88 (2013) 210–224 211



Download English Version:

https://daneshyari.com/en/article/7157273

Download Persian Version:

https://daneshyari.com/article/7157273

Daneshyari.com

https://daneshyari.com/en/article/7157273
https://daneshyari.com/article/7157273
https://daneshyari.com

