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a b s t r a c t

Entropic Lattice Boltzmann Method (ELBM) is used for the stable computational simulation of high Rey-
nolds number fluid flows, due to it alleviates the obstacle of numerical instabilities by restoring the sec-
ond law of thermodynamics (Boltzmann’s H-theorem). In general, this stability is gained at the price of
some computational overhead, associated with the requirement of adjusting the local relaxation param-
eter of the standard Lattice Boltzmann Method (LBM) in such a way as to guarantee compliance with H-
theorem. In this paper, we present a very efficient implementation strategy for ELBM based high Reynolds
number flow simulation on nVIDIA graphics processing unit (GPU) with optimization approaches. Some
algorithms for H-a solver on GPU which solve the relaxation adjusting parameter are also proposed in our
study. We demonstrate the ELBM-GPU parallel approach for fluid flows simulation which can reduce the
computational cost of ELBM implementation and obtain an excellent performance. Meanwhile, we find
that the direct approximate method of parameter solution is more efficient than other methods on the
whole. The results show that: (1) the whole ELBM-GPU implementation results in average speedups of
3.14 over the single-core ELBM-CPU result; (2) comparison of two types of methods for H-a solver, the
direct approximate method can save an average 31.7% of computation time than the iteration method;
and (3) the implementation of ELBM on GPU allows us to achieve up to 50% global memory bandwidth
utilization ratio.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

With the dramatic advances of high-speed digital computer
technology, the interest in computational fluid dynamics (CFD)
has increased significantly, especially in the last two decades. It
is well known that CFD deals with the numerical solution of the
Navier–Stokes (N–S) equations of continuum mechanics. In recent
years, the Lattice Boltzmann Method (LBM), which originates from
the Lattice Gas Cellular Automata (LGA) method [1], has proved to
be an efficient alternative to the numerical solving of N–S equa-
tions for simulation of complex fluid systems [2–4]. LBM solves
the macroscopic dynamics of fluid flows via a mesoscopic approach
based on a simplified version of the Boltzmann kinetic equation
(that is the fully discrete equation), this approach is attained by
calculating transmission and collision of particle. Owing to the ki-
netic nature of the equation, the pressure field and the stress ten-
sor are locally available without solving any Poisson problem.
Sequentially, a lot of applications on LBM are widespread, which
range from hydrodynamics at large Reynolds number to fluid flows

at a microscale, porous media and multiphase flows [5–7]. Never-
theless, it has been recognized by many authors that the applica-
tion of the LBM collision operator brings about numerical
instability problems [8,9], especially in conjunction with high Rey-
nolds number flows. Therefore, many researchers constantly seek
improvements of the stability properties of lattice kinetic schemes.
Fortunately, it has been discussed for some time in the literature
that stability of LBM could be improved if the method could be
based on an analog of the second law of thermodynamics (Boltz-
mann H-theorem) [8,10–12]. With the adequately progress in this
direction, the Entropic Lattice Boltzmann method (ELBM) [13–15]
has been established by constructing the collision integral on the
basis of discrete-time H-theorem. ELBM can get stable solution
by satisfying Boltzamnn H-theorem, according to the monotonicity
and the minimality of the H-function [16]. However, this stability
comes at the price of some computational overhead, associated
with the requirement of adjusting the local relaxation time of the
standard LBM in such a way as to secure compliance with the
Boltzmann H-theorem. The main computational overhead in ELBM
implementation is to solve non-linear equation for the relaxation
adjusting parameter a. In order to avoid such problem, a few opti-
mization strategies to reduce computational overhead of ELBM
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implementation are required with using both numerical methods
[17] and parallel computation [18].

Graphics Processing Unit (GPU) is a massively multi-threaded
architecture, it is firstly used for graphical computation and
now non-graphical computing to accelerate [19]. The most attrac-
tive feature of the GPU is its inherent parallelism, which comes
from multiple SIMD processing units. It is because of this charac-
teristic of GPU that it can be adopted properly for LBM simulator
on GPU [20]. Particularly, using nVIDIA’s Compute Unified Device
Architecture (CUDA) extension of the C language to employ GPU
for LBM simulation has been shown to provide well speedups
and Lattice node Updates Per Second (LUPS) over general-purpose
CPU versions [21–23]. Thus, we have been made recently several
attempts to implement ELBM on nVIDIA GPU using CUDA. Addi-
tionally, to calculate the relaxation adjusting parameter a of
ELBM implementation is proven to be very suitable for parallel
solution.

In this paper, we intend to provide the implementation of a very
efficient strategy for ELBM based high Reynolds number simulation
on nVIDIA GPU with optimization approaches. Some algorithms for
H-a solver on GPU are also presented and achieved. These imple-
mentation are made possible by the use of the nVIDIA CUDA C lan-
guage programming environment, with some optimization
principles more than those ones used in previous work. These prin-
ciples including maximum of occupancy, utilization of shared
memory adequately, sufficient coalesced global memory access
and thread divergence rareness, lead us to implement ELBM simu-
lation over a GPU-nVIDIA GeForce card achieving high perfor-
mance and near 3� speedups over general purpose CPU.
Meanwhile, we compare with the total computation cost and the
parameter calculation time ratio of several methods, it is found
that the direct method of parameter solution is most efficient
among such methods which are referred in the paper.

2. The Entropic Lattice Boltzmann Method

It is generally known that there are a lot of literatures about the
standard LBM description. For brevity, LBM is based on a threefold
discrete form of Lattice Boltzmann equation’s time, space and
velocity. Velocity space reduces to a finite set of well chosen veloc-
ities {eiji = 0 � � � N � 1}, where N is the number of direction of veloc-
ity and e0 = 0. Then the evolution equation becomes

fiðxþeidt;tþdtÞ¼ fiðx;tÞþhðf eq
i ðx;tÞ� fiðx;tÞÞ; i¼0 � � �N�1 ð1Þ

with fiðx; tÞ ¼ f ðx;v; tÞjv¼ei
representing the probability of finding a

particle at lattice site x at time t, moving along the lattice direction
defined by the discrete speed ei. f eq

i is an approximation of the Max-
well–Boltzmann equilibrium distribution function at low Mach
numbers and is solely based on hydrodynamic variables, i.e. fluid
density q and flow velocity u, which are given as
q ¼

PN�1
i¼0 fi;qu ¼

PN�1
i¼0 fiei. The symbol h is called relaxation param-

eter which equals 1
s with s representing a typical single timescale.

Here we focus on the description of ELBM main idea as well as
the primary distinction between ELBM and LBM.

2.1. The main idea of ELBM

In order to overcome the inability to attain low viscosity, espe-
cially when the flow velocity or spatial gradients are large, ELBM
was developed by Karlin et al. [11] and expanded by several
researchers recently. They attempt to enhance stability via the H-
function, through entropy functions whose local equilibrium are
suitable to recover the N–S equations. ELBM solves the kinetic
equation Eq. (1) where the relaxation parameter h is computed

with the purpose of satisfying the monotonicity of H-function
and H-theorem.

Based on the discussion in this paper is adopting discrete sche-
ma, the discrete H-function is given as follows

Hðf Þ ¼
XN�1

i¼0

fi ln
fi

xi

� �
ð2Þ

where xi are the weights associated with the ith particle speed ei

and the definition of fi, N are the same as above. Beyond that, in D
spatial dimensions, the ith particle distribution function fi(x, t) has
the following rule:

fiðx; tÞ ¼ xið2pT0Þ
D
2exp

v2
i

2T0 Fðx;v; tÞ ð3Þ

where F(x,v, t) is the one-particle distribution function, having posi-
tion vector x, continuous velocity vector v and observation time t, T0

is the reference temperature.

2.2. The primary distinction between ELBM and LBM

Firstly, the corresponding local equilibrium distribution func-
tion is derived not only from the expansion of Maxwell–Boltzmann
distribution but also from the minimization of H-function under
the constrain of local conservation laws. The explicit expression
of f eq

i which stands for the local velocity equilibrium distribution
function in ith direction has the following form [24]:

f eq
i ¼ qxi

YD

j¼1

ð2�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ u2

j

q
Þ

2uj þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 3u2

j

q
1� uj

0
@

1
A

v ij
v

ð4Þ

where j is the index of the spatial direction, uj is the component of
macroscopic velocity in jth direction.

Secondly, the relaxation parameter of standard LBM is constant
in general, but the relaxation parameter h of ELBM is locally ad-
justed in such a way that the monotonicity of the H-function is sat-
isfied. The monotonicity constrain on the H-function is imposed
through a two-steps geometric procedure. In the first step, the H-
function remains constant when populations are changed in the
direction of the bare collision, D = feq � f(as given by Karlin et al.
in [10]); In the second step, dissipation is introduced and the mag-
nitude of the H-function decreases. This delivers the following
effective relaxation frequency [16]:

h ¼ ab ð5Þ

where

b ¼ dt
2sþ dt

ð6Þ

Here s > 0 is the relaxation time related to the kinematic viscosity
m ¼ sc2

s , where cs is the speed of sound of the model and dt is the
discrete time step.

Furthermore, in Eq. (5), the parameter a > 0 which adjusts lo-
cally the relaxation time, as dictated by compliance with the H-
theorem is obtained by solving the following non-linear equation
[10,11].

Hðf Þ ¼ Hðf þ aDÞ ð7Þ

In fact, Eq. (7) is also called the entropy estimate, which means the
entropy in the postrelaxation state f + aD is equal to the entropy of
the precollision state f. It is crucial to remark [17] that when f ? feq,
the solution a ? 2 and Eq. (1) recover the stand LBM.

As the end of this section, we have the necessity to mention
Reynolds number. Normally, Reynolds number is defined as fol-
lowing equation:
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