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a b s t r a c t

We present a new approach to numerical modelling of incompressible flow of fluid about an elastically
mounted rigid structure with large body motions. The solution is based on the Finite Volume Particle
Method (FVPM), a meshless generalisation of the mesh-based finite volume method. The finite volume
particles are allowed to overlap, without explicit connectivity, and can therefore move arbitrarily to fol-
low the motion of a wall. Here, FVPM is employed with a pressure projection method for fully incom-
pressible flow coupled with motion of a rigid body. The developed extension is validated for Vortex-
Induced Vibration (VIV) of a circular cylinder in laminar crossflow. To minimise computational effort,
non-uniform particle size and arbitrary Lagrangian–Eulerian particle motion schemes are employed, with
radial basis functions used to define the particle motion near the cylinder. Close agreement is demon-
strated between the FVPM results and a reference numerical solution. Results confirm the feasibility of
FVPM as a new approach to the modelling of flow with strongly coupled rigid-body dynamics.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Many important problems in fluid dynamics are dominated by
moving boundaries. Examples include the heart and blood vessels,
internal combustion engines, animal flight and vortex-induced
vibration of slender elastic structures. In classical computational
fluid dynamics based on boundary-conforming meshes, special
treatments (such as mesh deformation, remeshing, overset meshes
and immersed boundaries) are required for flows of this kind. In
meshless methods, in contrast, the computational nodes or parti-
cles are free to move in response to boundary motions, since their
connectivity need never be specified. Therefore, it appears that
meshless methods can avoid the difficulties presented by a mesh
with moving boundaries.

There is now a significant body of work on the meshless method
smoothed particle hydrodynamics (SPH) demonstrating validated
applications in a range of applications, notably in free-surface flow.
SPH was first applied to free-surface flow by Monaghan [1] using a
weakly compressible approach. Incompressible free-surface SPH
methods were developed by Cummins and Rudman [2] using a
pressure projection, and by Shao and Lo using a density-invariant
formulation [3]. A comprehensive review is given by Monaghan
[4].

The relatively new finite volume particle method (FVPM) is a
meshless generalisation of the classical mesh-based finite volume
method which, in principle, avoids some limitations of other mesh-
less methods. The central idea of FVPM, and the main difference
between it and the mesh-based finite volume method, is the defi-
nition of an interface area between overlapping finite volume cells
(particles), in contrast with the contiguous but strictly non-over-
lapping finite volume cells in a mesh. Since finite volume particles
may overlap arbitrarily, there is no need to determine or maintain
connectivity information. They can move in any manner, as long as
fluxes due to the particles’ motion are accounted for. This makes it
straightforward to accommodate moving boundaries. Where a par-
ticle is truncated by a boundary, a particle-boundary interface area
is defined, enabling boundary flux to be computed. FVPM was
introduced by Hietel et al. [5]. It was subsequently analysed by
Junk and Struckmeier [6] and Junk [7], proving consistency of the
scheme, and rigorously establishing FVPM as a generalisation of
the finite volume method. Keck and Hietel [8] implemented a pres-
sure projection scheme for fully incompressible flow. Improved
methods for the particle interface area calculation were proposed
by Hietel and Keck [9] and Teleaga [10]. Nestor et al. [11] extended
FVPM to second-order spatial accuracy and viscous flows, and Tele-
aga [12,10] and Nestor and Quinlan [13] applied the method to
moving-boundary problems.

FVPM embodies some valuable properties of the finite volume
method without sacrificing the flexibility of a meshless method
for moving boundaries and interfaces. Boundary conditions are
implemented straightforwardly by prescription of fluxes from the
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boundary to the particle. FVPM possesses proven theoretical con-
sistency [6], and local conservation is exact, regardless of variation
in particle size. In addition, a wide range of established finite vol-
ume techniques (e.g. Riemann solvers) can be directly incorporated
in FVPM. However, there have been few applications of FVPM to
date, and most have been restricted to simple benchmark
problems.

This article is concerned with development and validation of
FVPM for a more challenging problem in which full advantage
can be taken of the meshless formulation. We describe the exten-
sion of the FVPM to flow-induced motion of a rigid structure
(henceforth referred to as rigid-body FSI) for incompressible flow.
This extension is validated for Vortex-Induced Vibration (VIV) of
a circular cylinder in cross-flow, a problem involving coupling of
fluid dynamics with a rigid body undergoing large displacements.
The motivation for this study is to validate FVPM on a well-studied
fluid–structure interaction problem, in advance of applications
involving more complex rigid-body dynamics and/or elastic
bodies.

The FVPM formulation is described in Section 2. The rigid-body
FSI extension of FVPM is presented in Section 3 and a novel ALE
particle motion scheme for FVPM is presented in Section 4. Results
are presented in Section 5 from FVPM simulations for crossflow
over a circular cylinder vibrating with prescribed motion and a
freely vibrating cylinder. The FVPM results are compared with ref-
erence solutions from the literature throughout.

2. The finite volume particle method

2.1. FVPM formulation

The semi-discrete form of the FVPM for a conservation law is
[5,12]

d
dt

ViUið Þ ¼ �
XN

j¼1

bij F ðUi;UjÞ
� �

� bb
i F

b
i ; ð1Þ

where t is time, Vi is the volume of particle i, and U is the vector of
conserved variables. The numerical flux F ðUi;UjÞ is an approxima-
tion to Fij � Uij

�_xij, where Uij and �_xij are averages of the conserved
variables and particle transport velocity, respectively, of particle i
and its neighbour j. The superscript b denotes boundary terms.
The element of FVPM which differentiates it from the classical finite
volume method is the particle interaction vector, defined by

bij ¼
Z

X

WirWj �WjrWiP
kWk

� �2 dx; ð2Þ

where Wi = W(x � xi(t),h) is a compactly supported kernel function
for particle i, centred at xi. The compact support radius is 2h, where
h is called the smoothing length, in keeping with the SPH conven-
tion. The quantity bij is precisely analogous to the cell face normal
area vector which weights intercell fluxes in the classical finite vol-
ume method [7]. The particle interaction vectors are evaluated by
numerical integration and corrected by the procedure of Teleaga
[10] to ensure the condition

P
jbij ¼ 0 (analogous to the condition

that a cell surface is closed in traditional finite volume methods)
is exactly satisfied.

Interparticle fluxes are computed using a MUSCL reconstruction
from particle barycentres to particle–particle interfaces, as de-
scribed by Nestor et al. [11]. The reconstruction is based on a con-
sistency-corrected SPH estimate of gradients [14] at the particle
barycentre. The HLL Riemann solver [15] is then used to approxi-
mate the interparticle inviscid momentum fluxes.

One valuable property of FVPM, exploited in the present work,
is that particle size may be spatially non-uniform. That is, neigh-
bours i and j can have different support radius 2h. In the form used
here, hi is constant in time, although the case h = h(t) may also be
treated with an additional term involving dh/dt [5]. A second-order
explicit Runge–Kutta scheme is used for temporal discretisation of
Eq. (1).

For full details of FVPM, the reader is referred to Hietel et al. [5].
The implementation in the present work follows the details given
by Nestor et al. [11,13], except where stated otherwise.

2.2. Fully incompressible solution methodology

FVPM has previously been applied to fully incompressible flow
problems by several authors [8,13,16]. The pressure projection
algorithm of Chorin [17], adapted for SPH by Cummins and Rud-
man [2], is used to achieve the fully incompressible flow solution.
The algorithm can be summarised (using a first-order explicit
temporal discretisation for brevity) by the following sequence of
steps:

Vnþ1
i ¼ Vn

i þ Dt
dVi

dt

n

; ð3Þ

U�i ¼
1

Vnþ1
i

Vn
i Un
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; ð4Þ
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where d(ViUi)⁄,n/dt is computed from Eq. (1) without the pressure
term in the flux function F . The algorithm consists of a preliminary
time advance of the momentum equation (disregarding the pres-
sure terms), which yields the momentum U⁄ in Eq. (4) that is not
guaranteed to satisfy the divergence-free velocity condition. The
pressure solution at time n + 1 is computed in Eq. (6). The velocity
is corrected in Eq. (7) so that the divergence-free velocity condition
is satisfied.

Care must be taken when developing the discrete form of the
pressure Poisson equation (Eq. (6)) to ensure that the discrete
scheme does not admit spurious checkerboard solutions for the
pressure. An appropriate choice for the discrete Laplacian and
divergence operators is described by Nestor and Quinlan [13].

In the present work, the solution to the discretised pressure
Poisson equation in Eq. (6) is obtained with the LASPACK imple-
mentation of the GMRES algorithm [18].

2.3. Boundary conditions

A significant advantage of FVPM over other mesh-free methods
is that boundary fluxes can be prescribed straightforwardly wher-
ever a particle is truncated by a boundary. The discretisation of
these terms allows for a straightforward enforcement of boundary
conditions in terms of a boundary flux and a geometric interaction
vector. Following Keck [16] and Keck and Hietel [8], the boundary
coefficient bb

i in Eq. (1) may be computed from

bb
i ¼ �

XN

j¼1

bij: ð8Þ
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