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a b s t r a c t

A new modification of the Smoothed Particle Hydrodynamics (SPH) method is presented. The perfor-
mance of the proposed method is checked when used together with Local Lax-Friedrichs (LLF), Harten,
Lax, van Leer (HLL) and exact Riemann solvers, and we derive the SPH equations for each applied solver.
The validation problems include Sod’s problem, Sjögreen test, blast wave tests, and collision of strong
shocks problem. On the basis of our results, we conclude that the application of HLL and LLF approximate
Riemann solvers is preferable, with LLF solver having a smallest compuational load. The conservative
properties of the method are also strong. The linear momentum, the total mass, and the total energy
are conserved within machine accuracy for all applied Riemann solvers.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Smoothed Particle Hydrodynamics (SPH) is a gridless Lagrangian
particle method, and because of its simplicity and robustness, SPH
is a useful tool for applications in numerous areas, including fluid
dynamics, magnetohydrodynamics, free surface and interfacial
flows, multi-phase flows, high-velocity impacts, penetration, shock
damage in solids, and explosion phenomena [1]. Regarding simula-
tions of explosions phenomena, SPH was successfully applied for
underwater explosion [2,3], detonation of TNT charge of various
geometry [3], and detonation of heterogeneous explosives [4].

Since it was introduced, the SPH has been the subject of exten-
sive research to address major technical difficulties when applied
for simulations of strong explosions. In particular, when SPH with
the conventional artificial viscosity concept is applied to model
flows which evolve strong shocks, the resulting shock fronts are
smeared while near contact discontinuities strong glitches are
present. Shock profiles appear to be more blurred and broad than
when grid based methods are applied. The low accuracy at bound-
aries and regions with high gradients is related to the applied
shock capturing scheme and consistency of the SPH approxima-
tion. SPH methods which enforce consistency of the particle
approximation show a much better accuracy at boundaries, but fail
near contact discontinuities [5].

In the more involved reformulations of SPH, which can handle
strong shock phenomena, the pairwise particle interaction is
determined by solving the Riemann problem between each pair

of interacting particles [6–8]. This technique is analogous to that
used in grid based Godunov type methods where the Riemann
problem is solved at each cell interface to calculate the inter-cell
flux.

In the SPH version of [8], the particle consistency is restored and
Godunov-type scheme is applied. In this method the evolution
equations are obtained by direct convolution of the exact equa-
tions with the kernel function, while evaluation of the spatial inte-
grals is performed by interpolating the specific volume around
each pair of particles. Unfortunately, when applied to blast wave
and shock wave problems, the resulting pressure and energy pro-
files show strong spikes near contact discontinuities [7]. The
amplitude of these spikes depends weakly on the accuracy of the
interpolation procedure which is necessary for evaluating the spa-
tial integrals.

Parshikov and Medin [6] applied Godunov-type SPH in conjunc-
tion with the approximate state Riemann solver. In contrast to [8]
where the density summation approach is applied, they evaluate
the density flux from the continuity equation. For mild problems,
such as Sod’s shock tube test, their method does not produce spikes
near contact discontinuities. For the blast wave problem their
method requires a fine tuning of ad hoc coefficients in the continu-
ity equation which cannot be justified.

Cha and Whitworth [7] derived four different versions of Godu-
nov-type SPH. They observed observed that particles which repre-
sent colliding flows do not penetrate across contact discontinuity
even in the case of supersonic flows. For the Godunov-type SPH
this effect is brighter. However, the runs of the strong blast wave
test exhibit strong spikes near the contact discontinuity for all kind
of methods they applied.
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Murante et al. [9] improved significantly the accuracy of the
Godunov SPH method by applying MUSCL [10] approach when
the second order accuracy is achieved with the use of piecewise
linear reconstruction. Despite improvements they made, spurious
oscillations near contact discontinuities are still present.

The reliability and convergence of any kind of numerical meth-
od are both important. However, it is not always possible to
achieve both especially in the wide range of solutions. If numerical
artifacts exist when first order method is applied for simple one-
dimensional test problem such as Sod shock tube test, it is hard
to believe that the second order extension of the method is able
to describe complex physical phenomena in one or two-
dimensional cases. The main intention of this work is select
numerical scheme which produce reliable results with acceptable
convergence within framework of conventional SPH.

In this article we derive the SPH equations using finite vol-
ume approach which is frequently applied for Lagrangian meth-
ods on unstructured meshes. The performance of the code is
checked with various exact and approximate Riemann solvers.
We apply Local Lax-Friedrichs (LLF), Harten, Lax, van Leer
(HLL) and exact Riemann solvers. Our intention is to select
approximate solvers which do not produce spurious oscillations
near contact discontinuities on the one hand. On the other hand,
we seek to find solvers which do not require significant modifi-
cations of existing SPH codes. We check the performance of se-
lected Riemann solvers with the one-dimensional tests and
compare obtained results against exact solutions. We found that,
when exact Riemann solver is applied, the resulting pressure and
energy profiles show strong spikes which do not dissapear when
the temporal and spatial resolution increases, while results with
LLF and HLL solvers do not show such artifacts. The latter out-
performed the exact Riemann solver in terms of computational
load. We conclude therefore, that LFF and HLL solvers are more
suitable for the subsequent second order extension of the
method.

The paper is organized as follows. In Section 2 we write down
the general form SPH hydrodynamic equations. The SPH equations
for exact, Local Lax-Friedrichs (LLF), Harten, Lax, van Leer (HLL)
Riemann solvers are derived in Sections 2.1, 2.2 and 2.3, respec-
tively. The Section 2.4 describes proposed time-step criteria. The
applied interface tracking technique is explained in the Section 2.5.
Then in Section 3 we show the results of a few model calculations
when derived equations applied for the conventional one-dimen-
sional tests. Section 3.4 provides the data which gives the informa-
tion about the computational load when different Riemann solvers
are applied. In Section 3.5 the actual convergence rate of derived
equations is studied. The results are discussed in Section 4, and
in Section 5 we give conclusions.

2. The SPH equations

In the SPH the interpolation of a quantity A, which is a function
of the spatial coordinates, is based on the integral interpolant

AðrÞ ¼
Z

Aðr0ÞWðr� r0; hÞdr0 ð1Þ

where the function W is the kernel. The interpolant reproduces A
exactly if the kernel satisfies the following conditions:Z

Wðr� r0;hÞdr0 ¼ 1; ð2Þ

and

lim
h!0

Wðr� r0; hÞ ¼ dðr� r0Þ; ð3Þ

where d(r � r0) is the Delta function. Since kernel is normalized to 1,
the constants are interpolated exactly [1].

To apply this interpolation to a fluid, we divide it into a set of
small mass elements. The element i has a mass mi, density qi, posi-
tion ri and volume vi=mi/qi. The value of A at particle i is denoted by
Ai. The integral (1) can then be approximated by a summation over
the mass elements. This gives the summation interpolant

Ai ¼
XN

j¼1

v jAjWðr� rj;hÞ; ð4Þ

where the summation is over all the particles but, in practice, it is
only over near neighbors if W falls off rapidly with distance. Typi-
cally, h is close to the particle spacing and the kernel W is effectively
zero beyond a some distance. For subsequent discussion it is impor-
tant to note that Ai is the weighted average.

The Euler equations for unsteady compressible flow in the
Lagrangian reference frame may be written in integral form as

@

@t

Z
VðtÞ

UdV þ
I

SðtÞ
ðn � FÞdS ¼ 0 ð5Þ

where V(t) is a time-dependent control volume enclosed by the
boundary S(t), U is the vector of dependent variables, n is the out-
ward unit vector normal to the boundary, and F is the flux vector.
The forms used for U and F are defined as:

U ¼
1
u
E

2
64

3
75; F ¼

�u
Ip
pu

2
64

3
75; ð6Þ

where q is the density, u is the velocity vector, p is the pressure, I is
the unit tensor, E ¼ eþ 1

2 u2 is the specific energy, and e is the spe-
cific internal energy. The set of Eq. (5) is closed with the equation
of state:

p ¼ ðc� 1Þq�; ð7Þ

where c denotes the ratio of specific heats.
Enforcing the integral conservation law for a particular particle,

i, Eq. (5) can be written as

@

@t

Z
v i

UdV þ
Z

v i

ðr � FÞdV ¼ 0 ð8Þ

where we used the divergence theorem. In what follows we assume
that any vector or scalar variable inside of volume vi is equal to the
volume average of this variable. Defining volume average for con-
served variables and the divergence of the flux vector as

Ui ¼
1
v i

Z
v i

UdV ; ð9Þ

ðr � FÞi ¼
1
v i

Z
v i

ðr � FÞdV : ð10Þ

the dependent variables at time levels n and n + 1 can be related by

Unþ1
i ¼ qnþ1

i

qn
i

½Un
i � Dtðr � FÞni �; ð11Þ

where Dt is the time step. Eq. (11) can be used to update U explic-
itly. The resulting algorithm is first order accurate in time. Equa-
tions similar to (11) are frequently applied in the case of
unstructured meshes [11,12].

Directly applying SPH particle approximation to the divergence
of the flux vector yields the following equation

ðr � FÞi ¼
XN

j¼1

v jðAF1D
j Þ � riWij; ð12Þ
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