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a b s t r a c t

Buoyant rise of bubbles is investigated using the lattice Boltzmann method (LBM) based Gunstensen’s
color model. An external force/sink term is incorporated in the collision step to simulate buoyant rise
of bubbles under gravitational force. The shape of a bubble is controlled by inertial, viscous and surface
tension forces. The interplay between these forces is quantified using non-dimensional numbers such as
Eötvös number (Eo), Morton number (Mo) and Reynolds number (Re). A set of results from numerical
simulations are presented to demonstrate the ability of the proposed approach to simulate rise of single
and multiple bubbles under buoyancy. The proposed modification is verified by comparing terminal
velocity of bubbles in an infinite medium against the analytical solution. The shape of bubbles in various
flow regimes characterized by the non-dimensional numbers is compared against the experimental data.
The effect of surface tension and viscosity ratio on terminal velocity and shape of bubbles is investigated.
The LBM results for topological change in the shape of bubbles or circularity of bubbles is compared
against COMSOL. Co-axial and oblique coalescence of two gas bubbles are simulated and compared
against the experimental data. The simulation results from LBM simulations were found to be in good
agreement with the analytical solution, the experimental data and the COMSOL simulation.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Multiphase flow system is commonly observed in several
natural and industrial processes such as ink-jet printing [1,2],
spray cooling [3,4], carbon sequestration [5], soil-vapor extraction
[6–8] and nuclear waste management [9,10]. Buoyant rise of
bubbles under gravitational force has been a common area of inter-
est for experimental and numerical researchers. Rise of bubbles in
viscous fluid is characterized by non-dimensional numbers such as

the Eötvös number Eo ¼ d2
0gDq
r ; Morton number Mo ¼ q2

l
m4

l
gDq

r3 and

Reynolds number Re ¼ Vd0
ml

; where d0 is diameter of bubble, ql is

density of suspended liquid, and qg is density of gas or bubble, ml

is kinematic viscosity of liquid, Dq = ql–qg is the density difference
between the liquid (ql) and the gas/bubble (qg), g is gravitational
acceleration, V is terminal velocity and r is surface tension. Eötvös
number (Eo) and Morton number (Mo) represent the ratio between
surface tension force and buoyant force acting on a suspended
bubble. Reynolds number (Re) indicates the balance between vis-
cous drag and inertial force. Buoyant force lifts the bubble against
the gravity whereas the viscous drag tends to retard the flow of a

bubble. Surface tension force tries to maintain the spherical shape
of a bubble.

Different numerical methods have been applied to simulate
multiphase flow (see Prosperetti and Tryggvason [11]). Fuster,
Agbaglah [12] used a volume of fluid (VOF) method, balanced-force
surface tension and quad/octree adaptive mesh refinement (AMR)
to simulate bubble dynamics. van Sint Annaland et al. [13] pre-
sented an interface reconstruction technique based on piecewise
linear interface representation in volume of fluid (VOF) method
to simulate co-axial and oblique coalescence of two gas bubbles.
van Sint Annaland et al. [14] used a 3-D front tracking method
employing a new surface tension model to simulate single and
multiple bubble dynamics in dispersed fluid. Olsson and Kreiss
[15–17] used a level set method to simulate bubble dynamics.
COMSOL Multiphysics [18] is a commercial software that applies
level set method to simulate multiphase flow system.

The numerical simulation of multiphase flow is a challenging
class of problems because of the inherent difficulty in tracking
the fluid interfaces, mass conservation, and the correct treatment
of the surface tension forces [19]. In recent years, the lattice
Boltzmann method (LBM) has emerged as a very promising numer-
ical approach for simulation of complex multiphase flow [20–26].
LBM based immiscible multiphase flow model can be divided into
three types: Rothman–Keller (R–K) model [20,27,28], the
Shan–Chen (SC) model [22], and the free energy (FE) approach
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[24,29]. Huang et al. [30] compared performance and stability of
three approaches to simulate immiscible multiphase flow; the FE
method was found to be better than the other two approaches
for high density and viscosity contrast between two fluid
components.

Sankaranarayanan et al. [31] presented comparison between
LBM and front-tracking finite-difference methods for bubble simu-
lations and found that both numerical schemes are qualitatively
similar and within a few percent quantitatively. Several variants
of LBM based multiphase flow model [19,32–39] have been applied
to simulate bubble dynamics in recent years. The successes of
LBM-based simulations are mainly due to their mesoscopic and ki-
netic nature, which enables the simulation of their macroscopic
interfacial dynamics with their underlying microscopic nature.

In this work, we adopted the Rothman–Keller (R–K) type binary
color model introduced by Gunstensen [20,27] for the LBM to sim-
ulate immiscible multiphase flow. The Gunstensen’s binary color
model recovers Galilean invariance with proper assignment of
immobile equilibrium particle, and the model can adjust the sur-
face tension independent of the density and the viscosity contrast
between binary fluid components [40]. However, the model works
well only for negligible density ratios [39,41], and is computation-
ally less efficient than the Shan–Chen model [22] due to an addi-
tional collision step for perturbation (see detail in the following
section). Grunau et al. [42] introduced two real valued parameters
in the original binary color model to account for density contrast
between two fluid components. Tölke [33] applied Gunstensen’s
color model with modification suggested by Grunau et al. [42] to
simulate multicomponent multiphase flow in porous media with
variable density and viscosity ratios between multiple binary flu-
ids. It was found that the model is not stable for large-scale real-life
problems where binary fluids have significant density or viscosity
contrast. The binary color model has been applied to demonstrate
the effect of geometry and viscosity contrast on flow regimes at
high capillary numbers [34,41]. Farhat et al. [43] applied binary
color model to simulate deformation and velocity of red blood cell
(RBC) while streaming through capillaries whose diameters are
smaller than the RBC size. The interfacial surface tension was made
non-uniform as a function of surfactant concentration on RBC.
Leclaire et al. [44] modified the original recoloring step proposed
by Latva-Kokko and Rothman [45] in Gunstensen’s binary color
model to improve efficiency and accuracy of estimate for surface
tension. The modified model is able to simulate viscosity contrast
as high as 10,000. Tölke et al. [40] applied Gunstensen’s color
model on multiple relaxation time (MRT) scheme in LBM to simu-
late multi-phase flows on non-uniform adaptive grids. Li et al. [46]
modified Gunstensen’s color model on the MRT scheme by decou-
pling the interfacial tension and the viscosity-related relaxation
time, and adding another MRT diffusion step to eliminate the
anti-diffusion effect of the recoloring step.

Bubble dynamics have been studied using different variants of
LBM-based multiphase flow model. Sankaranarayanan et al. [47]
used both the Shan and Chen [22] and the Shan and Doolen [23]
multiphase models to simulate bubble dynamics for a density ratio
of 100 with Bo < 5 and Mo > 1 � 10�6 [19,32] have used the
Shan–Chen model to simulate bubble dynamics. A non-ideal equa-
tion of state is generally assumed in this model to implement the
interfacial surface tension, and an external forcing term [47] was
used to implement buoyancy effect in the multiphase flow model.
Yu and Fan [48] applied the adaptive mesh refinement (AMR) meth-
od on the Shan–Chen model to simulate buoyant rise of bubbles and
found that LBM combined with AMR can significantly improve
accuracy and reduce computational cost [36,37] have applied free
energy (FE) method [24] to study dynamics of single bubbles for
moderate Reynolds number [21,49,50] used the projection method
in the free energy (FE) method to simulate buoyant rise of bubble

for high density ratio. Zheng et al. [51] included external forcing
term [37] in the free energy (FE) method to simulate bubble dynam-
ics with large density ratio. Farhat et al. [39] have combined 3-D
migrating multi-block algorithm with Gunstensen’s color model
to study bubble dynamics. The Grunau et al. [42] method was
adopted in this model to simulate density contrast; however, the
highest density contrast applied was O(10) due to thick interface
between the two fluids and stability issues.

The objective of this paper is to present a modification in the
LBM-based Gunstensen’s color model [20] to simulate buoyant rise
of bubbles. An effective force term is included during the collision
step in the model to account for buoyant force due to density con-
trast between the fluid components; hence, the buoyancy was not
directly simulated as an effect of pressure gradients in the flow, but
was introduced from an analytical understanding of buoyancy ef-
fects. Therefore, density contrast was not explicitly introduced in
the model. Mohamad and Kuzmin [52] explored three different
schemes to implement external force in LBM to simulate physical
processes such as density dependent flow, as well as spatially
and/or temporally varying body force with non-zero gradients.
Buick and Greated [53] also analyzed the implementation of body
force in LBM and concluded that better accuracy in LBM can be
achieved by adding external force in the collision step. This work
verifies the shape regime obtained with the proposed modification
at various Eo and Mo numbers against the experimental data. The
terminal velocity for bubbles from LBM simulation was verified
against the analytical solution, and the LBM results were also com-
pared against COMSOL simulation for circularity of bubble and ter-
minal Re. The simulation results from LBM for oblique and co-axial
coalescence of two bubbles were compared against the experimen-
tal data.

2. Lattice Boltzmann model

Lattice Boltzmann method (LBM) is a numerical scheme to sim-
ulate hydrodynamic systems governed by the Navier–Stokes equa-
tions (NSE) for isothermal compressible fluid flow [1,54,55]. LBM’s
are based on kinetic theory of gas at microscopic scale and have
proven to recover the Navier–Stokes solution at macroscopic scales
through Chapman–Enskog expansion of the Boltzmann equation at
low frequency, long wavelength limits, and at a low Mach number
[56]. Mach number (Ma) is a non-dimensional number that repre-
sents velocity of fluid (V) relative to speed of sound (cs). Unlike tra-
ditional numerical methods, the LBM does not discretize the
governing equations at macroscopic scale in space and time; in-
stead, it solves the dynamics of hypothetical particles governed
by the Boltzmann equation. The Boltzmann equation governs the
time rate of change of the particle distribution function (fj). The
particle distribution function (fj) represents the dynamic state of
a hypothetical group of particles in terms of its location (x) and
momentum at any time (t). The fj streams on discrete lattices
and is updated by a collision mechanism.

The linearized discrete Boltzmann equation as shown in Eq. (1)
is solved on discrete lattices [56]:

ð1Þ

where ej is the microscopic velocity of particle groups, f eq
j is equilib-

rium distribution function and s is a relaxation parameter that indi-
cates the rate at which the system approaches equilibrium through
a series of collisions and streaming. uj is a sink term that will be
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