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a b s t r a c t

The role of diffusion in creating rotationality (enstrophy) is studied here and a transport equation for
enstrophy is derived to explain this connection. As an illustration, flow instabilities and pattern formation
are investigated here for an inhomogeneous internal flow with definitive boundary conditions. Results
obtained by direct numerical simulation (DNS) of flow inside a two-dimensional rectangular lid driven
cavity (RLDC) show that diffusion is responsible in forming patterns at a post-critical Reynolds numbers.
The transport equation for enstrophy derived from the Navier–Stokes equation in Eulerian framework
helps to explain the enstrophy spectrum in flows, specially in 2D flows, where vortex stretching is absent
as the dominant energy cascade mechanism to small scales. For the 2D flow in RLDC, diffusion and
convection provide a unique equilibrium state in an intermediate post-critical range of Reynolds number
around 6000. This is independent of the geometric aspect ratio (height to width of the cavity) of the
cavity greater than or equal to two. Such equilibrium can be observed in numerical simulations, only
when special care is exercised for diffusion discretization at high wavenumbers. Another motivation in
this work is to show that diffusion and dissipation are not identical for inhomogeneous flows, as opposed
to equating these in studies of homogeneous turbulent flows. Organized enstrophy is shown as a
consequence of over-riding action of diffusion in creating rotationality in this flow.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Investigation on the true role of diffusion has remained a
problem, ever since the time when its role was considered as
stabilizing fluid flow by damping disturbances, attributed to
Kelvin, Helmholtz and Rayleigh [1]. Equating viscous diffusion with
dissipation was the sole reason for early instability studies to
ignore diffusion, as discussed in [1,2]. However, such studies were
unable to explain instability of flow over a flat plate, while the
same flow was successfully investigated by solving Orr-Sommer-
field equation (OSE) [3–5], which includes viscous diffusion in
the formulation. It was thought that retaining diffusion is
equivalent to producing an appropriate phase shift for a positive
feedback, which leads to flow instability.

Doering and Gibbon [6] studied the enstrophy transport for
two-dimensional periodic flows and obtained the evolution of
integrated enstrophy over the full domain as
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where x is the vorticity and m is the kinematic viscosity. Here, the
enstrophy is defined over the full periodic domain by kxk2

2. Thus,
one notes the effects of diffusion as strictly dissipative for periodic
flows viewed globally. In performing DNS of flows, one discretizes
all the terms and obtains the numerical solution without any
ambiguity. However, the point of view of equating diffusion with
dissipation is often used, as given above in Eq. (1), while
interpreting DNS results of homogeneous turbulent flows [7].
However if diffusion is viewed instantaneously at any point in a
flow, then the effects of diffusion is not strictly dissipative, as will
be explained here. When one looks at the time-averaged kinetic
energy of turbulent flows globally, effects of diffusion is again seen
to be as dissipative [8,9]. As shown in Eq. (4.34) of [9], time-average
of the diffusion term of Navier–Stokes equation manifests itself as a
combination of (i) a strictly dissipation term and (ii) another viscous
transfer term. However, the viscous transfer term integrates to zero
over the whole flow by the divergence theorem. This term is sometimes
also referred to as diffusive, because it is zero for homogeneous
turbulence. The authors furthermore add that the viscous transfer
term is negligible at high Reynolds numbers, except within the thin
viscous layers very near any solid surfaces while on the other hand,
the dissipative term is of crucial importance to turbulence energetics
everywhere. Similar observations are made in Section 3.3 of [8], with
respect to time-averaged turbulent kinetic energy. In the present
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investigation, we look at the instantaneous local behavior of diffu-
sion term and demonstrate in a flow the existence of a unique equi-
librium state where the diffusive nature dominates over the
dissipative nature of the viscous term in Navier–Stokes equation.

We also show by an appropriate analysis requiring the consid-
eration of the time-accurate total mechanical energy (as opposed
to time-averaged property of only the kinetic energy) of the flow
for which the action of viscous terms is not directly apparent. If
one constructs an equation for the total mechanical energy, as sug-
gested in [10] and developed in [11], then the role of diffusion be-
comes clearer, as described in the following. One writes the
Navier–Stokes equation in rotational form for this analysis as
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where different variables represent their usual meanings and the
viscous effects is via the last term on the right hand side, written
as the curl of the vorticity vector, multiplied by the kinematic
viscosity.

Describing the total mechanical energy (E) by

E ¼ p
q
þ
~V � ~V

2

and taking a divergence of the above Navier–Stokes equation yields
the distribution of E by the following equation

r2E ¼ r � ð~V � ~xÞ ð3Þ

Note that the viscous term drops out identically due to a vector
identity and the right hand side originate strictly from convection
term. However, the right hand side of the above equation can be ex-
pressed using the vector identity in further simplification of this
equation

r � ð~V � ~xÞ ¼ ~x � ~x� ~V � ðr �xÞ

Denoting the instantaneous point property of enstrophy by
X1 ¼ ~x � ~x, Eq. (3) can be written as

r2E ¼ X1 � ~V � ðr � ~xÞ ð4Þ

This equation shows the relevance of enstrophy and the diffusion
operator to be central in distributing total mechanical energy. In
[7], a similar equation has been written for the static pressure
(see Eq. (1.2) of the reference) which in present notations is given
by

r2 p
q

� �
¼ ðX1 � �=mÞ=2 ð5Þ

where � = 2msij sij and sij is the symmetric part of the strain tensor.
This equation is wrongly stated to be valid only for homogeneous
turbulence. Eq. (4) is written for any general flow derived from
Navier–Stokes equation without making any assumption or simpli-
fication. One notes that the term on the right hand side of Eq. (4)
can be written as ~V � r2~V

m , in drawing an analogy with the term �/m,
on the right hand side of Eq. (5), even though the right hand side
of Eq. (4) purely originates from convection term. This source of
confusion prompted the authors in [7,12,13], to equate the roles
of enstrophy and dissipation. One of the motivations here is to
highlight the connection between diffusion and enstrophy for flows.
The development and use of total mechanical energy equation to
study any flow instability is described in detail in [1,11].

In trying to understand the role of diffusion in creating rotation-
ality, an evolution equation is also developed here for enstrophy, as
a point property and its higher powers for any flow. This exercise
explains the roles of diffusion, dissipation and creation of rotation-
ality progressively to smaller scales. To demonstrate that this is

valid for any flow, we focus on a 2D flow, which does not have
the presence of vortex stretching to create smaller scales.

Reported DNS in [7], used Fourier spectral discretization in
space and second order Runge–Kutta time integration to solve Na-
vier–Stokes equation. This space–time dependent discretization is
very restrictive in parameter space, due to its numerical instability
and also due to its high dispersion error, as shown by spectral anal-
ysis in the appendix using the 1D convection equation. It is obvious
that any method which cannot solve this simple convection equa-
tion, is practically of little use in solving more complex Navier–
Stokes equation. The dynamical equilibrium in flows is a balance
between convection and diffusion processes, both of which have
to be captured correctly in equal measure. One of the salient fea-
tures of the presented results here is to show the existence of a
universal equilibrium between convection and diffusion in Na-
vier–Stokes equation. This can be captured only by carefully de-
signed numerical methods explained in the next section and
appendix.

There have been significant progresses made in developing high
accuracy compact schemes, which are dispersion relation preserv-
ing (DRP) and has been used for inhomogeneous flows. A similar
method has been used in [14,15] to simulate an inhomogeneous
zero pressure gradient boundary layer from the receptivity to a
fully developed 2D turbulent stage, displaying k�3 spectrum for
the energy. One of the motivations here is to show that for 2D
flows, rotationality is created at different scales via the enstrophy
cascade. This establishes a link between diffusion and enstrophy
for a wall-bounded inhomogeneous flow.

Here, the flow inside a RLDC driven by uniform translation of
the top lid (U1) is used as an example to reveal the role of diffusion
in Navier–Stokes equation, where pronounced rotationality is cre-
ated by simple translation of the top lid. It is well known [16] that
turbulence is characterized by many attributes, out of which the
primary ones being rotationality and broad-band energy spectrum
created by various instability mechanisms.

Flow in a square LDC has been studied and a unique topology
(triangular core vortex and gyrating satellite vortices) is described
in [17,18]. This was obtained with the help of highly accurate dis-
cretization of convection and diffusion processes in the flow. Flow
in RLDC is more complicated due to the presence of multiple cells
having distinct vortical structures. The upper cell of RLDC resem-
bles the flow in a square LDC, which in turn, drives the cell below
and so on. The rotational flow structures seen in various cells of
RLDC are caused by the translational motion of the lid, with each
cell showing presence of vortices of both signs.

The manuscript is formatted in the following manner. In the
next section, governing equations and the numerical methods to
solve 2D flow inside the RLDC are described. This is followed by
a section describing the flow inside RLDC, with respect to the insta-
bility sequence, topology and Hopf bifurcation of the flow. To ex-
plain this instability sequence and induced rotationality,
transport equation for enstrophy has been derived in Section 4.
In Section 5, we emphasize the requirements on diffusion discret-
ization in DNS. This is followed by summary and conclusion of the
results. In the appendix, the spectral analysis of numerical schemes
used for convection equation has been carried out.

2. Governing equations and numerical formulation

We have used the streamfunction–vorticity (w, x)-formulation
of Navier–Stokes equation to obtain numerical results reported for
the RLDC shown in Fig. 1. This formulation allows satisfaction of
solenoidality for velocity and vorticity identically. The non-dimen-
sional form of vorticity transport equation (VTE) for 2D flows is
given by

T.K. Sengupta et al. / Computers & Fluids 88 (2013) 440–451 441



Download English Version:

https://daneshyari.com/en/article/7157324

Download Persian Version:

https://daneshyari.com/article/7157324

Daneshyari.com

https://daneshyari.com/en/article/7157324
https://daneshyari.com/article/7157324
https://daneshyari.com

