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An interface-capturing method using a high-order central difference scheme is presented for simulations
of compressible multicomponent flows. The present method adds consistent numerical diffusion terms to
robustly capture interface discontinuities, while maintaining the velocity, pressure, and temperature
equilibriums at interfaces. Analysis of the numerical errors generated at the interfaces leads to a proposal
of new consistent numerical diffusion terms. The method solves a fully conservative form of the total
mass, momentum, total energy, and species-mass, and an additional advection form of the specific heats
ratio to preserve the pressure oscillation-free property at the interfaces. Several one- and two-dimen-
sional problems are used to verify the proposed method.
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1. Introduction

For simulations of interfaces in compressible multicomponent
flows, such as in the case of the thermodynamic state where the
specific heats ratio is different between two fluids, it is well known
that spurious pressure and velocity oscillations are generated at
the interfaces. Abgrall [1] addressed this unphysical oscillation
problem and solved it by introducing an advection form of the
transport equation of the specific heats ratio under the ideal gas
law (commonly called the quasi-conservative form). It was later
extended to the use of mass fraction by Shyue [2], and for more
complicated equations of state by Shyue [3] and Saurel and Abgrall
[4]. Karni [5] introduced a non-conservative model using primitive
variables to avoid the pressure oscillations, which was later modi-
fied to capture strong shock waves using the pressure evolution
equation [6]. A successful application of Karni’s method to a bub-
ble-shock interaction problem [7] has now become the benchmark
for compressible multicomponent flow algorithms. Saurel and
Abgrall [8] constructed a two-phase flow model without assuming
pressure equilibrium to circumvent some of the restrictions of
Abgrall’s and their original method, such as limitation of the equa-
tion of state and difficulty in including other physical effects such
as mass transfer and surface tension at the interface. Allaire et al.
[9] developed five-equation models with general equations of
state, including tabulated laws, extending the method of Abgrall.
Some recent studies have used the quasi-conservative form in
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the development of numerical methods for the purpose of sharply
capturing interfaces, for example, by coupling an interface com-
pression method [10] or using a Lagrange-Remap solver [11]. A
drawback of using the quasi-conservative form is its poor
species-mass conservation property. Another issue is the spatial
accuracy; the most simulations of compressible multicomponent
flows have been limited to low-order accuracy using conventional
upwind-biased schemes.

With regard to high-order methods in compressible multicom-
ponent flows, using the quasi-conservative form, Johnsen and
Colonius [12] attempted to apply higher-order methods using
weighted essentially non-oscillatory (WENO) schemes. They
demonstrated that the primitive variables must be reconstructed
in the characteristic interpolation to preserve the oscillation-free
property at the interfaces. Nonomura et al. [13] implemented a
weighted compact nonlinear scheme (WCNS) with the oscilla-
tion-free property, showing the effects of the choice of fully conser-
vative or quasi-conservative forms and the choice of characteristic
interpolation of conservative or primitive variables. Johnsen and
Ham [14] recently addressed the two drawbacks in the quasi-con-
servative form: the species-mass conservation error and tempera-
ture spikes problems, and proposed a solution using modified
WENO weights for the transport equation of mass fraction in the
conservative form.

On the other hand, Marquina and Mulet [15] directly solved the
conservation form of the governing equations using a flux-split
algorithm with WENO5 flux reconstruction, assuming that the
pressure fluctuations at interfaces are small and do not disturb
interface physics. Cook [16] used the conservative form of the
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Navier-Stokes equations for compressible multicomponent flow
simulations with a sixth-order compact differencing scheme,
where pressure and temperature equilibrations are achieved in a
computational cell by introducing the partial density and internal
energy with an iterative procedure. Kawai and Terashima [17] ap-
plied a sixth-order compact differencing scheme in the conserva-
tion form, where the pressure and velocity oscillations were
alleviated by introducing the localized artificial diffusivity (LAD)
method, while avoiding initial start-up errors (by not using one-
point jump initial conditions). Although the use of the conservative
form is promising, it introduces spurious oscillations which have
the potential to induce severe computational instabilities and
harm flow fields, such as acoustics and turbulence, especially when
high-order schemes are applied.

Thus, while high-order upwind-biased schemes (finite volume
WENO [12,14] and finite differencing WCNS [13]) have been suc-
cessfully applied to compressible multicomponent flow simula-
tions with the oscillation-free property, the use and possibility of
other high-order schemes, i.e., central-differencing-based schemes,
have not been discussed. In case of central-differencing-based
scheme, explicit numerical diffusion terms added for capturing
numerical discontinuities may deteriorate the oscillation-free
property, if they are inconsistently introduced. To the best of our
knowledge, there is no central-differencing-based method pro-
posed which satisfies the oscillation-free property. Further, some
recent studies of single component fluids [18] have shown that
the numerical dissipation introduced by high-order upwind-biased
schemes overwhelms a wide range of flow scales, even if the for-
mal order of accuracy is high, illustrating that the upwind-biased
high-order schemes may be too dissipative for resolving the broad
range of flow scales. In contrast, central-difference-based schemes
perform better for accurately resolving small scales due to their
low dissipation characteristic (e.g., see the comparisons between
high-order WENO schemes and central/upwind hybrid schemes
[18,19] or the LAD method [18,20]).

In this paper, we propose consistent numerical diffusion terms
that can be coupled with high-order central difference schemes for
the simulation of compressible multicomponent flows, in which
the velocity, pressure, and temperature equilibriums, and the con-
servation of total mass, momentum, total energy, and species mass
are all satisfied. The key lies in the consistent construction of
numerical diffusion terms introduced to robustly capture inter-
faces while maintaining the interface equilibriums. We first analyt-
ically derive the consistent numerical diffusion terms that satisfy
the velocity, pressure, and temperature equilibriums at interfaces,
and then test the proposed method on one- and two-dimensional
compressible multicomponent problems.

2. Numerical method
2.1. Governing equations

The Euler equations for multicomponent gases are written as:
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where p is the density, u is the velocity vector, p is the pressure,
E = pe +1pu-uis the total energy, Y; is the mass fraction of a com-
ponent i, and 4§ is the unit tensor. e is the internal energy per unit

mass. In this study, a calorically perfect gas is assumed with the
ideal gas equation of state:
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where R is the specific gas constant, R, is the universal gas constant,
W is the molar weight of the mixture, T is the temperature, and ) is
the ratio of the specific heat of the mixture.

2.2. Mixing rule

Since an artificial diffuse zone is generated near interfaces in
interface-capturing schemes, mixing rules are required to define
variables in the diffuse zone. The mean molar weight of the mix-
ture W is given using mass fractions by:
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The mean specific heat ratio of the mixture is defined using the heat
capacities of the mixture C, and C, as:
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where the heat capacities are defined in mass values (i.e., Cp;=
Cv,i + Ru/Wi)'

2.3. Discretization of the governing equations

Discretization of Eqs. (1)-(4) at node j and time n can be written
in a one-dimensional form as:
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where Dj[-] represents a discretization operator. Ax and At are the
grid spacing and time step sizes, respectively. Then, considering
that generally any numerical scheme including upwind schemes
can be recast into a form that consists of a central difference discret-
ization plus a numerical diffusion term, i.e., Dj[f] = Dj[f — A, where
D;[] denotes a central discretization operator (e.g., Dj[f] =
(fir1 —fi-1)/2) and Dj[A] represents a numerical diffusion term,
Egs. (8)-(11) can be rewritten as:
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where Ag consists of two terms, Ag = Ape + Age, in which A, and Ay,
are the numerical diffusion terms for the internal energy and kinetic
energy, respectively. Note that the pressure is split from the
momentum in Eq. (13), for which numerical diffusion is not added.

2.4. Numerical diffusion term for mass equations
In the case of multicomponent flow simulations, Eq. (12) must

be recovered when Eq. (15) is summed over all the components i.
Egs. (12), (15), and };Y; = 1 therefore give:
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