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a b s t r a c t

The time dependent interaction between two viscous deformable drops that move under the effect of
buoyancy force are simulated numerically in three dimensions. The effects of dimensionless parameters
on film drainage are studied. Drops have different sizes, so diameter of leading drop is half the diameter
of trailing drop. The Navier–Stokes equations are solved with a finite difference-front tracking method.
Important dimensionless numbers used, are the Bond number (Bo), the Morton number (M), the Reynolds
number (Re) and viscosity ratio ðkÞ. Bond number is considered to be large enough in order that drops
deform significantly. The results obtained by Manga and Stone [M. Manga, H.A. Stone, Buoyancy-driven
interactions between two deformable viscous drops, J. Fluid Mech 256 (1993) 647–683], at zero Reynolds
number, show that there are three mechanisms for thin film drainage between two drops: 1-Rapid drain-
age 2-Uniform drainage 3-Dimple formation.

The type of fluid drainage that occurs between two drops depends on the Bond number and viscosity
ratio. At a small Bond number, drainage takes place only with first method. For large Bond numbers,
drainage changes to the second mode. Only for moderate Bond numbers all three methods can happen.
Inertia affects collision of drops at small Bond numbers (more rigid drops). It is found that inertia effects
cannot be neglected at small Bond numbers, and the separation distance obtained does not agree with
simulations performed at zero Reynolds number. Also, the collision of two drops at early stages of inter-
action is influenced by the Reynolds number. The viscosity ratio affects the onset of dimple formation in
the interaction process. At a low viscosity ratio (0.2) the separation distance increases with the Reynolds
number. The dimple formation is enhanced with increasing the viscosity ratio, and it occurs at a larger
distance from the axis of symmetry.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The rise of bubbles and drops in viscous liquids is not only a
very common process in many industrial applications, but also is
an important fundamental problem in fluid dynamics. The motion
and interaction of drops and bubbles due to gravity is of funda-
mental importance in a variety of multiphase flows, such as li-
quid–liquid extraction, emulsion stability and separation, and
geophysical systems. Many flows contain buoyant particles that
are rigid or deformable. Polymer flows, fuel sprays and the motion
of the red blood cells are some such examples. Interaction of drops
and bubbles in a continuous phase is frequently encountered in
many industrial applications, such as food processing, production
of lubricant oils, paints, pharmaceutical and cosmetic products.
The presence of air bubbles in hydrodynamic systems often reveals
many undesirable effects, such as early erosion, loss of efficiency or
flow irregularities.

Experimental studies of the interaction and coalescence of two
fluid particles in pure liquids are very limited. Only a few experi-
mental studies have been reported in the literature dealing with
buoyancy-driven interaction and coalescence of two fluid particles
under low Reynolds number conditions. Olbricht and Kung [1]
studied the interaction between two unequal size drops suspended
in low Reynolds number flow through a capillary tube experimen-
tally. More recently, Manga and Stone [2] studied the non-axisym-
metric buoyancy driven interaction of two air bubbles rising in a
large container filled with com syrup. They observed that the initial
horizontal displacement of two deformable bubbles determines
the type of bubble interaction that occurs. The in-line interaction
of two gas bubbles rising in an unbounded domain was studied
by Crabtree and Bridgewater [3], Narayanan et al. [4], and Bhaga
and Weber [5] experimentally. These studies showed that the
wake of the leading bubble can play a vital role both in capturing
non-aligned bubbles, and in the subsequent coalescence behavior
of the bubbles. Duineveld [6] investigated the behavior of two bub-
bles rising side by side in hyper filtrated water experimentally.

Some numerical studies have been performed on drops motion
in recent years. Manga and Stone [2] studied time-dependent
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interactions between two buoyancy-driven deformable drops at
zero Reynolds number. They found there are three methods for
drainage of thin film between drops (rapid, uniform and dimple
drainage). Rother, Zinchenko and Davis [7] studied the simulta-
neous effect of small deformation and short-range van der Waals
attraction on the coalescence efficiency of two different-sized
slowly sedimenting drops. Davis [8] developed and used an axi-
symmetric boundary-integral method to study the interaction of
two deformable drops (or bubbles) rising (or settling) due to grav-
ity in a viscous medium at a small Reynolds number. He concluded
that when the Bond number is small, the interfacial tension keeps
the drops nearly spherical, and they separate with time. At higher
Bond numbers, however, deformation is significant and the trailing
drop is stretched due to the flow developed by the leading drop; it
may form one or more necks, and breaks when one of them
pinches off. The leading drop is flatterned due to the flow created
by the trailing drop; it forms a depression on its bottom which
evolves into a plume that rises through its center. Moreover, at suf-
ficiently high Bond numbers, the larger leading drop does not leave
the trailing drop behind, but instead may entrain and engulf it
within the depression or plume.

Bayareh and Mortazavi [9] performed a dynamic simulation of
deformable drops in simple shear flow at finite Reynolds numbers.
The flow was studied as a function of the Reynolds number and the
Capillary number, and a shear thinning behavior was observed.
Nourbakhsh and Mortazavi [10] used a finite difference-front
tracking method to study the motion of three- dimensional
deformable drops suspended in plane Poiseuille flow at non-zero
Reynolds numbers. They studied the effect of Capillary number,
the Reynolds number, and volume fraction in detail. They found
that drops with small deformation behave like rigid particles and
migrate to an equilibrium position about half way between the
wall and the centerline (the Segre–Silberberg effect). Mortazavi
and Tafreshi [11] studied the behavior of suspension of drops on
an inclined channel. The density distribution of drops and the fluc-
tuation energy of the flow across the channel was studied as a
function of the dimensionless parameters.

Here, time-dependent interactions between two buoyancy-dri-
ven deformable drops are studied at finite Reynolds numbers for
sufficiently large Bond numbers. We consider two drops with dif-
ferent sizes which translate along their line of centers due to buoy-
ancy. For definiteness, we assume that the drops are slightly lighter
than ambient fluid and that the smaller drop is above the larger
one. Drops rise against gravity while their separation decreases
with time. The geometry of the domain is shown in Fig. 1. The do-
main is periodic in the x, y and z directions.

2. Governing equations

The governing equations for the flow of multi-fluid systems are
the Navier–Stokes equations. In conservative form they are:
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where, u is the velocity, p is the pressure, q and l are the discontin-
uous density and viscosity fields, respectively. r is the interfacial
tension, f is a body force and the surface tension force is added at
the interface. The term db is a two or three-dimensional delta func-
tion constructed by repeated multiplication of one-dimensional del-
ta function. j is the curvature for two-dimensional flow and twice
the mean curvature for three-dimensional flows. n is a unit vector
normal to the front, x is the position in Eulerian coordinate, and X
is a Lagrangian representation of the interface. The Navier–Stokes
equations are solved by a second-order projection method using

centered differences on a fixed staggered grid. Both the drop and
the ambient fluid are taken to be incompressible, so the velocity
field is divergence free:

r � u ¼ 0 ð2Þ

Eq. (2), when combined with the momentum equation, leads to a
non-separable elliptic equation for the pressure. The elliptic equa-
tion for pressure is solved by a multi-grid method [12]. Equations
of state for the density and the viscosity are:

Dq
Dt
¼ 0 ð3Þ

Dl
Dt
¼ 0 ð4Þ

Eqs. (3) and (4) state that the density and the viscosity of a fluid par-
ticle remain constant.

3. Dimensionless parameters

Important dimensionless parameters are the Bond number
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and density ratio
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Here U is the steady state rise velocity of the larger drop (trail-
ing drop) when rising alone in a full periodic domain. q and l are
the density and viscosity. r is the interfacial tension, and g is the
acceleration due to gravity. Also, d is the diameter of larger drop.

4. Numerical method

Different numerical methods have been developed for simulat-
ing flows with interfaces. These methods can be divided into two
groups, depending on the type of grids used: moving grid and fixed
grid. Two important approaches of fixed-grid methods are the vol-
ume-of-fluid (VOF), and level-set method. The volume-of-fluid
method uses a marker function. The main difficulty in using VOF

Fig. 1. Geometry of the flow.
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