
An unstructured finite volume method for large-scale shallow flows
using the fourth-order Adams scheme

Abdelaziz Beljadid a,⇑, Abdolmajid Mohammadian a, Hazim M. Qiblawey b

a Department of Civil Engineering, University of Ottawa, 161 Louis Pasteur, Ottawa, Ontario K1N6N5, Canada
b Department of Chemical Engineering, Qatar University, P.O. Box 2713, Doha, Qatar

a r t i c l e i n f o

Article history:
Received 14 October 2012
Received in revised form 13 August 2013
Accepted 15 October 2013
Available online 24 October 2013

Keywords:
Shallow water
Rossby waves
Finite volume method
Coriolis effect
Adams method
Operator splitting

a b s t r a c t

In this paper, we introduce a new upwind finite volume method using unstructured grids for large-scale
shallow flows. This method uses a high-order upwind scheme for the calculation of the numerical flux,
and the fourth-order Adams method with a splitting approach for time integration. The process includes
three stages: in the first and third steps the Coriolis term is integrated analytically, and in the second step
the flux term is integrated numerically. Most upwind schemes perform well for gravity waves but they
lead to a high level of damping or numerical oscillations for Rossby waves. The proposed method presents
the advantage that it performs well for both gravity and Rossby waves. The use of fourth-order Adams
method without any iteration on the corrector is enough to suppress the short-wave numerical noise
without damping the long waves that are essential in the transport of energy Rossby waves, in large-scale
oceanic and atmospheric flows.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Shallow water equations (SWEs) are used to describe many
physical phenomena in oceans, rivers, the atmosphere, etc. These
equations are applicable when the vertical velocity component is
negligible compared to the horizontal components, and are ob-
tained by assuming hydrostatic pressure distribution (e.g., [29]).
The three-dimensional incompressible Navier–Stokes equations
are averaged over the depth to obtain the SWEs. In the absence
of viscous terms, SWEs can be considered a hyperbolic system.
The finite volume (FV) methods are most convenient for modeling
these systems since they have a conservative form. Upwind finite
volume (UFV) methods can numerically solve these systems with
good accuracy and an acceptable computational cost.

UFV schemes use exact or approximate methods to solve the
Riemann problem at the interface of computational cells. Godu-
nov’s method [11,10] is the most popular scheme using the exact
solution of the Riemann problem. Its extension to second-order
and to high-order schemes is given by Van Leer [27] and Colella
and Woodward [7], respectively. The exact algorithms are compu-
tationally expensive compared to the approximate methods. Roe’s
method [22], which is applied in this work, is the most popular
approximate method. It requires an accurate estimation of param-
eter values near the interface on both sides of the computational

cell. In the presence of source terms in the SWEs, the UFV schemes
may lead to numerical oscillations due to the imbalance between
the source and flux terms. To overcome this problem, some special
treatments can be applied for balancing the source and flux terms.
A large number of studies have been conducted in this direction,
such as Vázquez-Cendón [28], Gallouet et al. [9], Mohammadian
et al. [21], Mohammadian and Le Roux [20], and Stewart et al.
[25]. Other studies have been conducted to evaluate the perfor-
mance of various schemes for large-scale shallow flows (e.g.,
[31,8,14,13,17,12,30,16]). Nevertheless, UFV methods are consid-
ered in a limited number of studies (e.g., [18,19,6,1]). The perfor-
mance of numerical methods is greatly influenced by the
temporal schemes used. Total Variation Diminution (TVD) tempo-
ral integration methods, developed by Shu and Osher [24], are
among the most popular temporal integration schemes. They are
widely used for their ability to avoid oscillations and to maintain
stability. Furthermore, some higher-order TVD schemes are insen-
sitive to the values of Courant–Friedrichs–Lewy (CFL) numbers and
present highly accurate results over a wide range of CFL numbers
[2].

Beljadid et al. [2] studied the performance of UFV schemes with
TVD Runge–Kutta methods for temporal integration. Several as-
pects were examined, including mass and energy conservation,
numerical diffusion, and numerical oscillations for Kelvin, Yanai,
Poincaré, and gravity waves. The accuracy of various schemes
was analyzed for different types of waves in order to identify the
most accurate and efficient numerical schemes. Through numerical
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experiments, it was demonstrated that a third-order TVD Runge–
Kutta method (TVDRK3) combined with the upwind-centered
scheme provides accurate results for Kelvin, Yanai, Poincaré, grav-
ity, and inertia gravity waves. The TVDRK3 method with the up-
wind-centered scheme was found to be a good choice for these
types of waves. It was shown that the results remained accurate
for a wide range of CFL numbers, which is important in practical
applications. Moreover, this scheme presents good stability prop-
erties even for large spatial variation of computational cells, usu-
ally present in unstructured grids. However, this method fails in
the modeling of Rossby waves, which have a particular behavior
and are difficult to capture by several well-known upwind
schemes. In this paper we propose a new upwind finite volume
method which presents a good improvement for the modeling of
Rossby waves. A high-order spatial scheme based on polynomial
fitting is proposed. Operator splitting and the fourth-order Adams
method are used for temporal integration.

The paper is organized as follows: SWEs are presented in Sec-
tion 2. In Section 3, the proposed finite volume method is de-
scribed. Section 4 presents some numerical experiments for
equatorial Rossby waves. In Section 5, some numerical experi-
ments are performed using the proposed method for nonlinear
SWEs. Some concluding remarks complete the study.

2. Shallow water equations

In this section, linear and nonlinear shallow water equations are
presented. The conservative form of the 2D shallow water equa-
tions is written as [29]:

@U
@t
þ @E
@x
þ @G
@y
¼ S ð1Þ

The linear and nonlinear equations are defined in terms of
parameters U, E, G and S.

2.1. Linear SWEs

For linear shallow water equations, the parameters U, E, G and S
are defined as:
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where g represents the water surface elevation, u and v are the
depth-averaged velocity components in the x- and y-directions,
respectively, f is the Coriolis parameter, g is the gravity acceleration,
and (H + g) is the total water depth.

The term S may include various source terms such as bed fric-
tion, bed topography, and wind stress. Since this paper concen-
trates on Rossby waves, the source term S is assumed to include
the Coriolis parameter.

The beta-plane approximation to the Coriolis parameter is con-
sidered (f = by), where b is the linear coefficient of variation of f
with respect to y. The variable y is considered as the meridional
distance from the equator (positive northward). The parameter b
is given as:

b ¼ 2X=R ¼ 2:29� 10�11 m�1s�1 ð3Þ

where X and R are the angular speed of the Earth’s rotation and the
mean radius of the Earth, respectively (X = 7.29 � 10�5 rad s�1,
R = 6371 km)

The dimensionless form of SWEs is used in this paper. The mod-
el Eqs. (1) and (2) are converted into dimensionless form on an
equatorial beta-plane using the variables ~x ¼ x=L�, ~y ¼ y=L�,

~g ¼ g=H�, ~u ¼ u=U� and ~v ¼ v=U�. The reference values of the
depth (H⁄), time (T⁄), length (L⁄) and velocity (U⁄) scales are
expressed as:

H� ¼ H

T� ¼ b�1=2ðgHÞ�1=4

L� ¼ 1
bT�

U� ¼ V� ¼ L�

T�

ð4Þ

The resulting system, the Jacobian matrix, and the correspond-
ing eigenvalues and eigenvectors are given in Appendix A.

2.2. Nonlinear SWEs

For nonlinear shallow water equations, the parameters U, E, G
and S are defined as:

U ¼
h

hu

hv
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The source term S is assumed to include the Coriolis effect

S ¼ ð0; fhv ;�fhuÞt ð6Þ

where h is the total fluid depth.
In the presence of the Coriolis effect, the nonlinear SWEs are

converted into a dimensionless form on an equatorial beta-plane
using the variables ~x ¼ x=L�, ~y ¼ y=L�, ~h ¼ h=H�, ~u ¼ u=U�, and
~v ¼ v=U�. The characteristic time (T⁄), length (L⁄) and velocity
(U⁄) scales are expressed in terms of the parameter b in the same
way using Eq. (4), where the parameter H⁄ is the mean water
depth.

When the Coriolis force is absent, the following reference
parameters are used to convert the nonlinear SWEs to a dimen-
sionless form:

T� ¼ L�
ffiffiffiffiffiffiffiffi
gH�

p.
U� ¼ V� ¼ L�

T�
ð7Þ

where the characteristic length L⁄ can be arbitrarily chosen and the
parameter H⁄ can be chosen with the same order as the mean water
depth h in the system.

3. Finite volume method

An upwind finite volume method on an unstructured grid is
employed in this paper. The variables are located at the geometric
centers of the computational grids. Each triangle represents a con-
trol volume. The SWEs are integrated over every control volume as:Z

X
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� S

� �
dX ¼ 0 ð8Þ

where C and X denote the boundary and the area of the domain,
respectively.

By using the divergence theorem, the flux integral is trans-
formed into a boundary integral:Z

X

@E
@x
þ @G
@y

� �
dX ¼

Z
C

F � n dC ð9Þ

where F = (E,G)t is the flux vector and n is the unit outward normal
vector to the boundary C. Then, (8) leads to
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