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a b s t r a c t

We pursue a level set approach to couple an Eulerian shock-capturing fluid solver with space–time
refinement to an explicit solid dynamics solver for large deformations and fracture. The coupling algo-
rithms considering recursively finer fluid time steps as well as overlapping solver updates are discussed.
Our ideas are implemented in the AMROC adaptive fluid solver framework and are used for effective
fluid–structure coupling to the general purpose solid dynamics code DYNA3D. Beside simulations verify-
ing the coupled fluid–structure solver and assessing its parallel scalability, the detailed structural analysis
of a reinforced concrete column under blast loading and the simulation of a prototypical blast explosion
in a realistic multistory building are presented.

� 2013 Elsevier Ltd. All rights reserved.

1. Introduction

The construction of efficient and scalable algorithms for
simulating fluid–structure interaction (FSI) problems is an area of
active research. This is particularly true for shock-driven problems
e.g. [3], for which the discretizations both in fluid and solid are
usually time-explicit and therefore computationally comparably
inexpensive. On the other hand, major geometric complexities,
such as large structural deformations [34], fracture and even
fragmentation, might have to be considered. An approach to this
problem is to employ an immersed or embedded boundary method
in the fluid solver [24], in which moving solid structures slide
through a fixed Eulerian fluid background mesh. In most cases,
structured Cartesian schemes are used for embedded boundary
techniques [35].

Here, we employ our verified generic Cartesian fluid solver
framework AMROC [9–11,36] that implements a ghost fluid
approach [15] and relies on a scalar level set function, storing the
distance to the nearest boundary facet of the solid’s triangulation,
to represent the embedded geometry on the fluid grid [2]. To
mitigate boundary approximation inaccuracies, the fluid mesh in
the vicinity of the immersed boundary is refined on the fly. For cou-
pling, a temporal splitting technique, in which solvers exchange
data only at the interface between disjoint computational domains

after consecutive time steps, is adopted [21,6]. Distributed memory
parallelization both of the fluid and the solid mechanics solver is
fully supported permitting large-scale computations of technical
relevance.

The solver suite integrating AMROC with several solid
mechanics solvers is named Virtual Test Facility (VTF) and was first
released as public domain software in fall 2007 [13]. Successful FSI
applications of the VTF software include, for instance, blast waves
impinging on deforming viscoplastic materials modeled with a
volumetric finite element method [14,26], detonation waves in
combustible gases causing the fracture of piping using a thin-shell
finite element approach [5], strong pressure waves in water
inducing the rupture of metallic plates [12], the response of tubes
made of fiber composites [29], or simulation of blunt bodies and
parachutes in supersonic flows [20,18].

In this paper, we give a brief overview of the computational
methodologies used and – for the first time – present FSI
simulations in which AMROC is coupled through VTF modules to
the serial version of the general purpose explicit solid mechanics
solver DYNA3D by Hallquist and Lin [17] and used to simulate
prototypical blast explosions impacting on realistic building struc-
tures. The presentation is organized as follows: In Sections 2 and 3
we give an overview of the respective aspects of the AMROC and the
DYNA3D solver that are relevant to this paper. Section 4 contains a
presentation of the FSI coupling methodology considering adaptive
space–time refinement in the fluid solver and parallel computation
of fluid and solid update steps. In Section 5, four configurations of
increasing complexity are discussed: a simple elastic panel under
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planar shock impact, a parallel scalability assessment of a blast
explosion under a realistic highway bridge, analysis of a blast corre-
sponding to the Oklahoma bombing report [25] on a concrete col-
umn reinforced with steel, and finally, the simulation of a blast
explosion event in the lobby of a complex seven-story building.
The conclusions follow in Section 6.

2. AMROC adaptive fluid dynamics solver

2.1. Governing equations

The equations solved in AMROC for the purpose of this paper
are the Euler equations

@tqþr � ðquÞ ¼ 0;
@tðquÞ þ r � ðqu� uÞ þ rp ¼ 0;
@tðqEÞ þ r � ððqEþ pÞuÞ ¼ 0:

ð1Þ

In the latter, q is the fluid density, u the velocity vector, and E the
specific total energy. The hydrostatic pressure p is given by the
polytropic gas equation p ¼ ðc� 1Þ qE� 1

2 quT u
� �

with c = 1.4 denot-
ing the constant adiabatic exponent of air.

2.2. Numerical method

To solve Eq. (1) numerically, we apply a time-explicit shock-
capturing finite volume scheme based on Roe’s approximate
Riemann solver [32] specially hybridized with the Harten-Lax–
vanLeer (HLL) scheme to ensure strict positivity preservation [7].
Second-order accuracy in smooth solution regions is achieved with
the MUSCL-Hancock variable extrapolation technique.

The boundary geometry is mapped onto the Cartesian mesh
with a scalar level set function u that stores the distance to the
boundary surface and allows the efficient evaluation of the bound-
ary outer normal in every mesh point as n = �ru/jru [10]. Our
implementation allows both the use of signed distance level set
functions for representing volumetric elements [14] as well as un-
signed distance level set functions to consider thin-shell elements
[5]. In the signed distance case, a fluid cell is treated as an embed-
ded ghost cell if its midpoint satisfies u < 0. For thin-shell elements,
which have a mesh only within the element midplane and implic-
itly assumed constant thickness h, we employ the condition u < h/
2 and additionally evaluate the hydrodynamic load on each thin
element as the difference between the approximated pressure
values at u = h/2 in the positive and negative direction of each
element’s normal.

The vector of state in embedded ghost cells is then adjusted to
model the boundary conditions of a non-Cartesian reflective wall
moving with velocity v before applying the unaltered Cartesian
finite volume discretization. The last step involves interpolation
and mirroring of q, u, p across the boundary and modification
of the normal velocity in the immersed boundary cells to
(2v � n � u � n)n, cf. [11]. Here, we employ a dimension-wise linear
interpolation operation that can decrease the number of interpo-
lants directly near the boundary to ensure the monotonicity of
the numerical solution [10].

Crucial for the performance of the overall method is the fast
evaluation of the distance information, which is computationally
equivalent to determining for every fluid cell the closest facet on
the solid surface mesh. For this purpose, we employ a specially
developed algorithm based on characteristic reconstruction and
scan conversion by Mauch [23] that is used to compute the dis-
tance exactly only in a small band around the embedded structure.
In the following this algorithm is denoted as Closest Point Transform
(CPT).

2.3. Parallel adaptive mesh refinement

As it is characteristic for immersed Cartesian techniques, the
boundary treatment described in the previous section results in
some geometric approximation inaccuracies [24]. We mitigate this
problem by refining the embedded boundary dynamically during
the computation, typically up to the highest available resolution.
A refinement criterion based on u = 0 has been implemented for
this purpose.

For local dynamic mesh adaptation we have adopted the block-
structured adaptive mesh refinement (SAMR) method after Berger
and Colella [4] that is tailored especially for hyperbolic conserva-
tion laws on logically rectangular grids. In this approach, finite vol-
ume cells are clustered with a special algorithm into non-
overlapping computationally effective rectangular grids. Refine-
ment levels are integrated recursively using hierarchical time step
refinement. Spatial and temporal mesh widths on level l are rl-
times finer than on level l � 1, and a time-explicit finite volume
scheme will (in principle) remain stable on all levels of the hierar-
chy. Here, we assume rl P 2 for l > 0 and r0 = 1.

Parallelization of the SAMR method is relatively straightforward
as already in the serial algorithm subgrids are computationally
decoupled by utilizing layers of halo cells. The halos on level l
are set either to implement physical boundary conditions, for
l > 0 by time–space interpolation from data on level l � 1, or by
copying the data value from an overlying subgrid on l (synchroni-
zation). In AMROC, we follow a rigorous domain decomposition ap-
proach and partition the SAMR hierarchy from the root level on. A
careful analysis of the SAMR algorithm uncovers that the only par-
allel operations under this paradigm are halo cell synchronization,
redistribution of the data hierarchy and the application of flux cor-
rection terms along internal refinement boundaries that impose
the sum of abutting fine cell numerical fluxes on coarse grid cells
[8]. Partitions with similar workload are found at runtime as the
hierarchy evolves by a domain decomposition algorithm based
on a generalization of Hilbert’s space-filling curve [28]. The
space-filling curve defines an ordered sequence on the cells of
the root level that can easily be split in load-balanced portions.
As such curves are constructed recursively, they are locality-pre-
serving and therefore avoid an excessive data redistribution over-
head. Further on, the surface area is small, which reduces
synchronization costs. Benchmark results (not shown here) exhibit
good scalability for typical SAMR fluid-only benchmarks on several
thousand processors.

Finally, it is worth mentioning that the described computational
techniques are equally applicable to viscous high-speed flows. For
instance, Ziegler et al. [36] utilize AMROC to simulate the chemi-
cally reactive Navier–Stokes equations. In addition to an upwind
scheme for convection, time-explicit conservative central differ-
ence stencils are used to approximate the viscous fluxes. The pre-
viously described embedded boundary method can easily be
adjusted to impose no-slip boundary conditions but note that the
resolution along the embedded boundary typically needs to be sig-
nificantly finer than for Euler equations, cf. [24]. The adaptive mesh
refinement methodology of AMROC provides an effective means
for coping with these increased resolution requirements in space
as well as in time.

3. DYNA3D solid mechanics solver

3.1. Governing equations

DYNA3D is an explicit, nonlinear, finite element code for prob-
lems where high rate dynamics or stress wave propagation effects
are important. It uses a lumped mass formulation for efficiency.
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